The principle of the largest terms and quantum large deviations
Kybernetika, Tome 39 (2003) no. 2, p. [229].

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We give an approach to large deviation type asymptotic problems without evident probabilistic representation behind. An example provided by the mean field models of quantum statistical mechanics is considered.
Classification : 06F05, 81S05, 82B10, 93B27, 93C65, 93E03
Keywords: idempotentmeasures; quantum large deviations
@article{KYB_2003__39_2_a11,
     author = {Gulinsky, Oleg V.},
     title = {The principle of the largest terms and quantum large deviations},
     journal = {Kybernetika},
     pages = {[229]},
     publisher = {mathdoc},
     volume = {39},
     number = {2},
     year = {2003},
     mrnumber = {1996560},
     zbl = {1249.93156},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2003__39_2_a11/}
}
TY  - JOUR
AU  - Gulinsky, Oleg V.
TI  - The principle of the largest terms and quantum large deviations
JO  - Kybernetika
PY  - 2003
SP  - [229]
VL  - 39
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KYB_2003__39_2_a11/
LA  - en
ID  - KYB_2003__39_2_a11
ER  - 
%0 Journal Article
%A Gulinsky, Oleg V.
%T The principle of the largest terms and quantum large deviations
%J Kybernetika
%D 2003
%P [229]
%V 39
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KYB_2003__39_2_a11/
%G en
%F KYB_2003__39_2_a11
Gulinsky, Oleg V. The principle of the largest terms and quantum large deviations. Kybernetika, Tome 39 (2003) no. 2, p. [229]. http://geodesic.mathdoc.fr/item/KYB_2003__39_2_a11/