On continuous convergence and epi-convergence of random functions. Part I: Theory and relations
Kybernetika, Tome 39 (2003) no. 1, p. [75].

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Continuous convergence and epi-convergence of sequences of random functions are crucial assumptions if mathematical programming problems are approximated on the basis of estimates or via sampling. The paper investigates “almost surely” and “in probability” versions of these convergence notions in more detail. Part I of the paper presents definitions and theoretical results and Part II is focused on sufficient conditions which apply to many models for statistical estimation and stochastic optimization.
Classification : 60B10, 62G05, 90C15, 90C31
Keywords: continuous convergence; epi-convergence; stochastic programming; stability
@article{KYB_2003__39_1_a5,
     author = {Vogel, Silvia and Lachout, Petr},
     title = {On continuous convergence and epi-convergence of random functions. {Part} {I:} {Theory} and relations},
     journal = {Kybernetika},
     pages = {[75]},
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {2003},
     mrnumber = {1980125},
     zbl = {1249.90184},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2003__39_1_a5/}
}
TY  - JOUR
AU  - Vogel, Silvia
AU  - Lachout, Petr
TI  - On continuous convergence and epi-convergence of random functions. Part I: Theory and relations
JO  - Kybernetika
PY  - 2003
SP  - [75]
VL  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KYB_2003__39_1_a5/
LA  - en
ID  - KYB_2003__39_1_a5
ER  - 
%0 Journal Article
%A Vogel, Silvia
%A Lachout, Petr
%T On continuous convergence and epi-convergence of random functions. Part I: Theory and relations
%J Kybernetika
%D 2003
%P [75]
%V 39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KYB_2003__39_1_a5/
%G en
%F KYB_2003__39_1_a5
Vogel, Silvia; Lachout, Petr. On continuous convergence and epi-convergence of random functions. Part I: Theory and relations. Kybernetika, Tome 39 (2003) no. 1, p. [75]. http://geodesic.mathdoc.fr/item/KYB_2003__39_1_a5/