Time-domain and parametric $L^2$-properties corresponding to Popov inequality
Kybernetika, Tome 38 (2002) no. 5, p. [617].

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

For Popov’s frequency-domain inequality a general solution is constructed in $L^2$, which relies on the strict positive realness of a generating function. This solution allows revealing time-domain properties, equivalent to the fulfilment of Popov’s inequality in the frequency-domain. Particular aspects occurring in the dynamics of the linear subsystem involved in Popov’s inequality are further explored for step response, as representing a usual characterization in control system analysis. It is also shown that such behavioural particularities are directly related to the BIBO stability of the linear subsystem.
Classification : 93D10, 93D25
Keywords: Popov’s inequality; BIBO stability
@article{KYB_2002__38_5_a9,
     author = {Voicu, Mihail and Pastravanu, Octavian},
     title = {Time-domain and parametric $L^2$-properties corresponding to {Popov} inequality},
     journal = {Kybernetika},
     pages = {[617]},
     publisher = {mathdoc},
     volume = {38},
     number = {5},
     year = {2002},
     mrnumber = {1966950},
     zbl = {1265.93219},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2002__38_5_a9/}
}
TY  - JOUR
AU  - Voicu, Mihail
AU  - Pastravanu, Octavian
TI  - Time-domain and parametric $L^2$-properties corresponding to Popov inequality
JO  - Kybernetika
PY  - 2002
SP  - [617]
VL  - 38
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KYB_2002__38_5_a9/
LA  - en
ID  - KYB_2002__38_5_a9
ER  - 
%0 Journal Article
%A Voicu, Mihail
%A Pastravanu, Octavian
%T Time-domain and parametric $L^2$-properties corresponding to Popov inequality
%J Kybernetika
%D 2002
%P [617]
%V 38
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KYB_2002__38_5_a9/
%G en
%F KYB_2002__38_5_a9
Voicu, Mihail; Pastravanu, Octavian. Time-domain and parametric $L^2$-properties corresponding to Popov inequality. Kybernetika, Tome 38 (2002) no. 5, p. [617]. http://geodesic.mathdoc.fr/item/KYB_2002__38_5_a9/