Nonregular decoupling with stability of two-output systems
Kybernetika, Tome 38 (2002) no. 5, p. [553]
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper we present a solution to the decoupling problem with stability of linear multivariable systems with 2 outputs, using nonregular static state feedback. The problem is tackled using an algebraic-polynomial approach, and the main idea is to test the conditions for a decoupling compensator with stability to be feedback realizable. It is shown that the problem has a solution if and only if Morse’s list $I_{2}$ is greater than or equal to the infinite and unstable structure of the proper and stable part of the stable interactor of the system. A constructive procedure to find a state feedback, which achieves decoupling with stability, is also presented.
Classification :
93B11, 93B15, 93C35, 93D05, 93D15
Keywords: linear multivariable system; decoupling; stability
Keywords: linear multivariable system; decoupling; stability
@article{KYB_2002__38_5_a4,
author = {Ruiz-Le\'on, Javier and Mu\~noz, Jorge A. Torres and Lizaola, Francisco},
title = {Nonregular decoupling with stability of two-output systems},
journal = {Kybernetika},
pages = {[553]},
publisher = {mathdoc},
volume = {38},
number = {5},
year = {2002},
mrnumber = {1966945},
zbl = {1265.93203},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2002__38_5_a4/}
}
TY - JOUR AU - Ruiz-León, Javier AU - Muñoz, Jorge A. Torres AU - Lizaola, Francisco TI - Nonregular decoupling with stability of two-output systems JO - Kybernetika PY - 2002 SP - [553] VL - 38 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/KYB_2002__38_5_a4/ LA - en ID - KYB_2002__38_5_a4 ER -
Ruiz-León, Javier; Muñoz, Jorge A. Torres; Lizaola, Francisco. Nonregular decoupling with stability of two-output systems. Kybernetika, Tome 38 (2002) no. 5, p. [553]. http://geodesic.mathdoc.fr/item/KYB_2002__38_5_a4/