Parametrization and reliable extraction of proper compensators
Kybernetika, Tome 38 (2002) no. 5, p. [521].

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The polynomial matrix equation $X_lD_r$ $+$ $Y_lN_r$ $=$ $D_k$ is solved for those $X_l$ and $Y_l$ that give proper transfer functions $X_l^{-1}Y_l$ characterizing a subclass of compensators, contained in the class whose arbitrary element can be cascaded to a plant with the given strictly proper transfer function $N_rD_r^{-1}$ such that wrapping the negative unity feedback round the cascade gives a system whose poles are specified by $D_k$. The subclass is navigated and extracted through a conventional parametrization whose denominators are affine to row echelon form and the centre is in a compensator whose numerator has minimum column degrees. Applications include stabilization of linear multivariable systems.
Classification : 93B52, 93C05, 93D15, 93D21
Keywords: compensator; stabilization
@article{KYB_2002__38_5_a2,
     author = {Kraffer, Ferdinand and Zagalak, Petr},
     title = {Parametrization and reliable extraction of proper compensators},
     journal = {Kybernetika},
     pages = {[521]},
     publisher = {mathdoc},
     volume = {38},
     number = {5},
     year = {2002},
     mrnumber = {1966943},
     zbl = {1265.93122},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2002__38_5_a2/}
}
TY  - JOUR
AU  - Kraffer, Ferdinand
AU  - Zagalak, Petr
TI  - Parametrization and reliable extraction of proper compensators
JO  - Kybernetika
PY  - 2002
SP  - [521]
VL  - 38
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KYB_2002__38_5_a2/
LA  - en
ID  - KYB_2002__38_5_a2
ER  - 
%0 Journal Article
%A Kraffer, Ferdinand
%A Zagalak, Petr
%T Parametrization and reliable extraction of proper compensators
%J Kybernetika
%D 2002
%P [521]
%V 38
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KYB_2002__38_5_a2/
%G en
%F KYB_2002__38_5_a2
Kraffer, Ferdinand; Zagalak, Petr. Parametrization and reliable extraction of proper compensators. Kybernetika, Tome 38 (2002) no. 5, p. [521]. http://geodesic.mathdoc.fr/item/KYB_2002__38_5_a2/