Estimation of variances in a heteroscedastic RCA(1) model
Kybernetika, Tome 38 (2002) no. 4, p. [405].

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The paper concerns with a heteroscedastic random coefficient autoregressive model (RCA) of the form $X_t=b_tX_{t-1}+Y_t$. Two different procedures for estimating $\sigma _t^2=EY_t^2, \sigma _b^2=Eb_t^2$ or $\sigma _B^2=E(b_t- Eb_t)^2$, respectively, are described under the special seasonal behaviour of $\sigma _t^2$. For both types of estimators strong consistency and asymptotic normality are proved.
Classification : 62F10, 62F12, 62M10
Keywords: random coefficient autoregressive model
@article{KYB_2002__38_4_a1,
     author = {Jane\v{c}kov\'a, Hana},
     title = {Estimation of variances in a heteroscedastic {RCA(1)} model},
     journal = {Kybernetika},
     pages = {[405]},
     publisher = {mathdoc},
     volume = {38},
     number = {4},
     year = {2002},
     mrnumber = {1937137},
     zbl = {1264.62069},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2002__38_4_a1/}
}
TY  - JOUR
AU  - Janečková, Hana
TI  - Estimation of variances in a heteroscedastic RCA(1) model
JO  - Kybernetika
PY  - 2002
SP  - [405]
VL  - 38
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KYB_2002__38_4_a1/
LA  - en
ID  - KYB_2002__38_4_a1
ER  - 
%0 Journal Article
%A Janečková, Hana
%T Estimation of variances in a heteroscedastic RCA(1) model
%J Kybernetika
%D 2002
%P [405]
%V 38
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KYB_2002__38_4_a1/
%G en
%F KYB_2002__38_4_a1
Janečková, Hana. Estimation of variances in a heteroscedastic RCA(1) model. Kybernetika, Tome 38 (2002) no. 4, p. [405]. http://geodesic.mathdoc.fr/item/KYB_2002__38_4_a1/