Information boundedness principle in fuzzy inference process
Kybernetika, Tome 38 (2002) no. 3, p. [327]
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The information boundedness principle requires that the knowledge obtained as a result of an inference process should not have more information than that contained in the consequent of the rule. From this point of view relevancy transformation operators as a generalization of implications are investigated.
@article{KYB_2002__38_3_a8,
author = {Sarkoci, Peter and \v{S}abo, Michal},
title = {Information boundedness principle in fuzzy inference process},
journal = {Kybernetika},
pages = {[327]},
publisher = {mathdoc},
volume = {38},
number = {3},
year = {2002},
mrnumber = {1944313},
zbl = {1265.68278},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2002__38_3_a8/}
}
Sarkoci, Peter; Šabo, Michal. Information boundedness principle in fuzzy inference process. Kybernetika, Tome 38 (2002) no. 3, p. [327]. http://geodesic.mathdoc.fr/item/KYB_2002__38_3_a8/