Solution for a classical problem in the calculus of variations via rationalized Haar functions
Kybernetika, Tome 37 (2001) no. 5, p. [575].

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A numerical technique for solving the classical brachistochrone problem in the calculus of variations is presented. The brachistochrone problem is first formulated as a nonlinear optimal control problem. Application of this method results in the transformation of differential and integral expressions into some algebraic equations to which Newton-type methods can be applied. The method is general, and yields accurate results.
Classification : 49J15, 49K15, 49M30, 65K10, 70Q05
Keywords: variational problem; brachistochrone problem; nonlinear optimal control problem
@article{KYB_2001__37_5_a3,
     author = {Razzaghi, Mohsen and Ordokhani, Yadollah},
     title = {Solution for a classical problem in the calculus of variations via rationalized {Haar} functions},
     journal = {Kybernetika},
     pages = {[575]},
     publisher = {mathdoc},
     volume = {37},
     number = {5},
     year = {2001},
     mrnumber = {1877075},
     zbl = {1265.49023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2001__37_5_a3/}
}
TY  - JOUR
AU  - Razzaghi, Mohsen
AU  - Ordokhani, Yadollah
TI  - Solution for a classical problem in the calculus of variations via rationalized Haar functions
JO  - Kybernetika
PY  - 2001
SP  - [575]
VL  - 37
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KYB_2001__37_5_a3/
LA  - en
ID  - KYB_2001__37_5_a3
ER  - 
%0 Journal Article
%A Razzaghi, Mohsen
%A Ordokhani, Yadollah
%T Solution for a classical problem in the calculus of variations via rationalized Haar functions
%J Kybernetika
%D 2001
%P [575]
%V 37
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KYB_2001__37_5_a3/
%G en
%F KYB_2001__37_5_a3
Razzaghi, Mohsen; Ordokhani, Yadollah. Solution for a classical problem in the calculus of variations via rationalized Haar functions. Kybernetika, Tome 37 (2001) no. 5, p. [575]. http://geodesic.mathdoc.fr/item/KYB_2001__37_5_a3/