Parallel algorithm for spatially one-and two-dimensional initial-boundary-value problem for a parabolic equation
Kybernetika, Tome 37 (2001) no. 2, p. [171]
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
A generalization of the spatially one-dimensional parallel pipe-line algorithm for solution of the initial-boundary-value problem using explicit difference method to the two-dimensional case is presented. The suggested algorithm has been verified by implementation on a workstation-cluster running under PVM (Parallel Virtual Machine). Theoretical estimates of the speed-up are presented.
Classification :
65M06, 65Y05, 68W10
Keywords: initial-boundary-value problem; parallel virtual machine (PVM)
Keywords: initial-boundary-value problem; parallel virtual machine (PVM)
@article{KYB_2001__37_2_a5,
author = {Purcz, Pavol},
title = {Parallel algorithm for spatially one-and two-dimensional initial-boundary-value problem for a parabolic equation},
journal = {Kybernetika},
pages = {[171]},
publisher = {mathdoc},
volume = {37},
number = {2},
year = {2001},
mrnumber = {1839227},
zbl = {1265.68355},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2001__37_2_a5/}
}
TY - JOUR AU - Purcz, Pavol TI - Parallel algorithm for spatially one-and two-dimensional initial-boundary-value problem for a parabolic equation JO - Kybernetika PY - 2001 SP - [171] VL - 37 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/KYB_2001__37_2_a5/ LA - en ID - KYB_2001__37_2_a5 ER -
Purcz, Pavol. Parallel algorithm for spatially one-and two-dimensional initial-boundary-value problem for a parabolic equation. Kybernetika, Tome 37 (2001) no. 2, p. [171]. http://geodesic.mathdoc.fr/item/KYB_2001__37_2_a5/