Goodness of fit tests with weights in the classes based on $(h,\phi)$-divergences
Kybernetika, Tome 36 (2000) no. 5, p. [589].

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The aim of the paper is to present a test of goodness of fit with weigths in the classes based on weighted $\left( h,\phi \right) $-divergences. This family of divergences generalizes in some sense the previous weighted divergences studied by Frank et al [frank] and Kapur [kapur]. The weighted $\left( h,\phi \right)$-divergence between an empirical distribution and a fixed distribution is here investigated for large simple random samples, and the asymptotic distributions are shown to be either normal or equal to the distribution of a linear combination of independent chi-square variables. Some approximations to the linear combination of independent chi-square variables are presented.
Classification : 60E05, 62B10, 62E10, 62E20, 62G10
@article{KYB_2000__36_5_a5,
     author = {Landaburu, Elena and Pardo, Leandro},
     title = {Goodness of fit tests with weights in the classes based on $(h,\phi)$-divergences},
     journal = {Kybernetika},
     pages = {[589]},
     publisher = {mathdoc},
     volume = {36},
     number = {5},
     year = {2000},
     mrnumber = {1882796},
     zbl = {1244.62065},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2000__36_5_a5/}
}
TY  - JOUR
AU  - Landaburu, Elena
AU  - Pardo, Leandro
TI  - Goodness of fit tests with weights in the classes based on $(h,\phi)$-divergences
JO  - Kybernetika
PY  - 2000
SP  - [589]
VL  - 36
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KYB_2000__36_5_a5/
LA  - en
ID  - KYB_2000__36_5_a5
ER  - 
%0 Journal Article
%A Landaburu, Elena
%A Pardo, Leandro
%T Goodness of fit tests with weights in the classes based on $(h,\phi)$-divergences
%J Kybernetika
%D 2000
%P [589]
%V 36
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KYB_2000__36_5_a5/
%G en
%F KYB_2000__36_5_a5
Landaburu, Elena; Pardo, Leandro. Goodness of fit tests with weights in the classes based on $(h,\phi)$-divergences. Kybernetika, Tome 36 (2000) no. 5, p. [589]. http://geodesic.mathdoc.fr/item/KYB_2000__36_5_a5/