A maximum likelihood estimator of an inhomogeneous Poisson point processes intensity using beta splines
Kybernetika, Tome 36 (2000) no. 4, p. [455].

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The problem of estimating the intensity of a non-stationary Poisson point process arises in many applications. Besides non parametric solutions, e. g. kernel estimators, parametric methods based on maximum likelihood estimation are of interest. In the present paper we have developed an approach in which the parametric function is represented by two-dimensional beta-splines.
Classification : 60G55, 62M09, 62M30
Keywords: non-stationary Poisson point process; estimating the intensity
@article{KYB_2000__36_4_a4,
     author = {Krej\v{c}{\'\i}\v{r}, Pavel},
     title = {A maximum likelihood estimator of an inhomogeneous {Poisson} point processes intensity using beta splines},
     journal = {Kybernetika},
     pages = {[455]},
     publisher = {mathdoc},
     volume = {36},
     number = {4},
     year = {2000},
     mrnumber = {1830649},
     zbl = {1249.60096},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2000__36_4_a4/}
}
TY  - JOUR
AU  - Krejčíř, Pavel
TI  - A maximum likelihood estimator of an inhomogeneous Poisson point processes intensity using beta splines
JO  - Kybernetika
PY  - 2000
SP  - [455]
VL  - 36
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KYB_2000__36_4_a4/
LA  - en
ID  - KYB_2000__36_4_a4
ER  - 
%0 Journal Article
%A Krejčíř, Pavel
%T A maximum likelihood estimator of an inhomogeneous Poisson point processes intensity using beta splines
%J Kybernetika
%D 2000
%P [455]
%V 36
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KYB_2000__36_4_a4/
%G en
%F KYB_2000__36_4_a4
Krejčíř, Pavel. A maximum likelihood estimator of an inhomogeneous Poisson point processes intensity using beta splines. Kybernetika, Tome 36 (2000) no. 4, p. [455]. http://geodesic.mathdoc.fr/item/KYB_2000__36_4_a4/