An interpolation problem for multivariate stationary sequences
Kybernetika, Tome 36 (2000) no. 3, p. [321]
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let {\boldmath$X$} and {\boldmath$Y$} be stationarily cross-correlated multivariate stationary sequences. Assume that all values of {\boldmath$Y$} and all but one values of {\boldmath$X$} are known. We determine the best linear interpolation of the unknown value on the basis of the known values and derive a formula for the interpolation error matrix. Our assertions generalize a result of Budinský [1].
@article{KYB_2000__36_3_a3,
author = {Klotz, Lutz},
title = {An interpolation problem for multivariate stationary sequences},
journal = {Kybernetika},
pages = {[321]},
publisher = {mathdoc},
volume = {36},
number = {3},
year = {2000},
mrnumber = {1773507},
zbl = {1243.62124},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2000__36_3_a3/}
}
Klotz, Lutz. An interpolation problem for multivariate stationary sequences. Kybernetika, Tome 36 (2000) no. 3, p. [321]. http://geodesic.mathdoc.fr/item/KYB_2000__36_3_a3/