An interpolation problem for multivariate stationary sequences
Kybernetika, Tome 36 (2000) no. 3, p. [321].

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let {\boldmath$X$} and {\boldmath$Y$} be stationarily cross-correlated multivariate stationary sequences. Assume that all values of {\boldmath$Y$} and all but one values of {\boldmath$X$} are known. We determine the best linear interpolation of the unknown value on the basis of the known values and derive a formula for the interpolation error matrix. Our assertions generalize a result of Budinský [1].
Classification : 60G10, 60G25, 62H20, 62M20, 62M99
Keywords: linear interpolation
@article{KYB_2000__36_3_a3,
     author = {Klotz, Lutz},
     title = {An interpolation problem for multivariate stationary sequences},
     journal = {Kybernetika},
     pages = {[321]},
     publisher = {mathdoc},
     volume = {36},
     number = {3},
     year = {2000},
     mrnumber = {1773507},
     zbl = {1243.62124},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2000__36_3_a3/}
}
TY  - JOUR
AU  - Klotz, Lutz
TI  - An interpolation problem for multivariate stationary sequences
JO  - Kybernetika
PY  - 2000
SP  - [321]
VL  - 36
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KYB_2000__36_3_a3/
LA  - en
ID  - KYB_2000__36_3_a3
ER  - 
%0 Journal Article
%A Klotz, Lutz
%T An interpolation problem for multivariate stationary sequences
%J Kybernetika
%D 2000
%P [321]
%V 36
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KYB_2000__36_3_a3/
%G en
%F KYB_2000__36_3_a3
Klotz, Lutz. An interpolation problem for multivariate stationary sequences. Kybernetika, Tome 36 (2000) no. 3, p. [321]. http://geodesic.mathdoc.fr/item/KYB_2000__36_3_a3/