On generalized Popov theory for delay systems
Kybernetika, Tome 36 (2000) no. 1, p. [2].

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

This paper focuses on the Popov generalized theory for a class of some linear systems including discrete and distributed delays. Sufficient conditions for stabilizing such systems as well as for coerciveness of an appropriate quadratic cost are developed. The obtained results are applied for the design of a memoryless state feedback control law which guarantees the (exponential) closed-loop stability with an ${\cal L}_2$ norm bound constraint on disturbance attenuation. Note that the proposed results extend similar ones proposed by some of the authors [inddl:98].
Classification : 93B36, 93B52, 93C05, 93C23, 93D05, 93D10, 93D15
Keywords: Popov generalized theory; delay system; memoryless state feedback control
@article{KYB_2000__36_1_a1,
     author = {Niculescu, S. I. and Ionescu, V. and Iv\u{a}nescu, D. and Dugard, L. and Dion, J.-M.},
     title = {On generalized {Popov} theory for delay systems},
     journal = {Kybernetika},
     pages = {[2]},
     publisher = {mathdoc},
     volume = {36},
     number = {1},
     year = {2000},
     mrnumber = {1760884},
     zbl = {1249.93141},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2000__36_1_a1/}
}
TY  - JOUR
AU  - Niculescu, S. I.
AU  - Ionescu, V.
AU  - Ivănescu, D.
AU  - Dugard, L.
AU  - Dion, J.-M.
TI  - On generalized Popov theory for delay systems
JO  - Kybernetika
PY  - 2000
SP  - [2]
VL  - 36
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KYB_2000__36_1_a1/
LA  - en
ID  - KYB_2000__36_1_a1
ER  - 
%0 Journal Article
%A Niculescu, S. I.
%A Ionescu, V.
%A Ivănescu, D.
%A Dugard, L.
%A Dion, J.-M.
%T On generalized Popov theory for delay systems
%J Kybernetika
%D 2000
%P [2]
%V 36
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KYB_2000__36_1_a1/
%G en
%F KYB_2000__36_1_a1
Niculescu, S. I.; Ionescu, V.; Ivănescu, D.; Dugard, L.; Dion, J.-M. On generalized Popov theory for delay systems. Kybernetika, Tome 36 (2000) no. 1, p. [2]. http://geodesic.mathdoc.fr/item/KYB_2000__36_1_a1/