On generalized Popov theory for delay systems
Kybernetika, Tome 36 (2000) no. 1, p. [2]
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
This paper focuses on the Popov generalized theory for a class of some linear systems including discrete and distributed delays. Sufficient conditions for stabilizing such systems as well as for coerciveness of an appropriate quadratic cost are developed. The obtained results are applied for the design of a memoryless state feedback control law which guarantees the (exponential) closed-loop stability with an ${\cal L}_2$ norm bound constraint on disturbance attenuation. Note that the proposed results extend similar ones proposed by some of the authors [inddl:98].
Classification :
93B36, 93B52, 93C05, 93C23, 93D05, 93D10, 93D15
Keywords: Popov generalized theory; delay system; memoryless state feedback control
Keywords: Popov generalized theory; delay system; memoryless state feedback control
@article{KYB_2000__36_1_a1,
author = {Niculescu, S. I. and Ionescu, V. and Iv\u{a}nescu, D. and Dugard, L. and Dion, J.-M.},
title = {On generalized {Popov} theory for delay systems},
journal = {Kybernetika},
pages = {[2]},
publisher = {mathdoc},
volume = {36},
number = {1},
year = {2000},
mrnumber = {1760884},
zbl = {1249.93141},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2000__36_1_a1/}
}
TY - JOUR AU - Niculescu, S. I. AU - Ionescu, V. AU - Ivănescu, D. AU - Dugard, L. AU - Dion, J.-M. TI - On generalized Popov theory for delay systems JO - Kybernetika PY - 2000 SP - [2] VL - 36 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/KYB_2000__36_1_a1/ LA - en ID - KYB_2000__36_1_a1 ER -
Niculescu, S. I.; Ionescu, V.; Ivănescu, D.; Dugard, L.; Dion, J.-M. On generalized Popov theory for delay systems. Kybernetika, Tome 36 (2000) no. 1, p. [2]. http://geodesic.mathdoc.fr/item/KYB_2000__36_1_a1/