Optimality conditions for nonconvex variational problems relaxed in terms of Young measures
Kybernetika, Tome 34 (1998) no. 3, p. [335].

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The scalar nonconvex variational problems of the minimum-energy type on Sobolev spaces are studied. As the Euler–Lagrange equation dramatically looses selectivity when extended in terms of the Young measures, the correct optimality conditions are sought by means of the convex compactification theory. It turns out that these conditions basically combine one part from the Euler–Lagrange equation with one part from the Weierstrass condition.
Classification : 49J40, 49K20, 49K27, 49Q20
Keywords: nonconvex variational problem; Sobolev space; Young measure; convex compactification theory; Euler-Lagrange equation; Weierstrass condition; minimum-energy type; optimality conditions
@article{KYB_1998__34_3_a5,
     author = {Roub{\'\i}\v{c}ek, Tom\'a\v{s}},
     title = {Optimality conditions for nonconvex variational problems relaxed in terms of {Young} measures},
     journal = {Kybernetika},
     pages = {[335]},
     publisher = {mathdoc},
     volume = {34},
     number = {3},
     year = {1998},
     mrnumber = {1640982},
     zbl = {1274.49040},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1998__34_3_a5/}
}
TY  - JOUR
AU  - Roubíček, Tomáš
TI  - Optimality conditions for nonconvex variational problems relaxed in terms of Young measures
JO  - Kybernetika
PY  - 1998
SP  - [335]
VL  - 34
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KYB_1998__34_3_a5/
LA  - en
ID  - KYB_1998__34_3_a5
ER  - 
%0 Journal Article
%A Roubíček, Tomáš
%T Optimality conditions for nonconvex variational problems relaxed in terms of Young measures
%J Kybernetika
%D 1998
%P [335]
%V 34
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KYB_1998__34_3_a5/
%G en
%F KYB_1998__34_3_a5
Roubíček, Tomáš. Optimality conditions for nonconvex variational problems relaxed in terms of Young measures. Kybernetika, Tome 34 (1998) no. 3, p. [335]. http://geodesic.mathdoc.fr/item/KYB_1998__34_3_a5/