Maximum likelihood principle and $I$-divergence: continuous time observations
Kybernetika, Tome 34 (1998) no. 3, p. [289].

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The paper investigates the relation between maximum likelihood and minimum $I$-divergence estimates of unknown parameters and studies the asymptotic behaviour of the likelihood ratio maximum. Observations are assumed to be done in the continuous time.
Classification : 62B10, 62F10, 62F12, 62M10
Keywords: maximum likelihood estimation; information divergence; Gaussian process; autoregressive processes
@article{KYB_1998__34_3_a2,
     author = {Mich\'alek, Ji\v{r}{\'\i}},
     title = {Maximum likelihood principle and $I$-divergence: continuous time observations},
     journal = {Kybernetika},
     pages = {[289]},
     publisher = {mathdoc},
     volume = {34},
     number = {3},
     year = {1998},
     mrnumber = {1640970},
     zbl = {1274.62067},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1998__34_3_a2/}
}
TY  - JOUR
AU  - Michálek, Jiří
TI  - Maximum likelihood principle and $I$-divergence: continuous time observations
JO  - Kybernetika
PY  - 1998
SP  - [289]
VL  - 34
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KYB_1998__34_3_a2/
LA  - en
ID  - KYB_1998__34_3_a2
ER  - 
%0 Journal Article
%A Michálek, Jiří
%T Maximum likelihood principle and $I$-divergence: continuous time observations
%J Kybernetika
%D 1998
%P [289]
%V 34
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KYB_1998__34_3_a2/
%G en
%F KYB_1998__34_3_a2
Michálek, Jiří. Maximum likelihood principle and $I$-divergence: continuous time observations. Kybernetika, Tome 34 (1998) no. 3, p. [289]. http://geodesic.mathdoc.fr/item/KYB_1998__34_3_a2/