Maximum likelihood principle and $I$-divergence: discrete time observations
Kybernetika, Tome 34 (1998) no. 3, p. [265]
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The paper investigates the relation between maximum likelihood and minimum $I$-divergence estimates of unknown parameters and studies the asymptotic behaviour of the likelihood ratio maximum. Observations are assumed to be done in the discrete time.
Classification :
62B10, 62F12, 62M10
Keywords: maximum likelihood estimate; information divergence; exponential families; discrete time process; autoregressive sequences
Keywords: maximum likelihood estimate; information divergence; exponential families; discrete time process; autoregressive sequences
@article{KYB_1998__34_3_a1,
author = {Mich\'alek, Ji\v{r}{\'\i}},
title = {Maximum likelihood principle and $I$-divergence: discrete time observations},
journal = {Kybernetika},
pages = {[265]},
publisher = {mathdoc},
volume = {34},
number = {3},
year = {1998},
mrnumber = {1640966},
zbl = {1274.62066},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1998__34_3_a1/}
}
Michálek, Jiří. Maximum likelihood principle and $I$-divergence: discrete time observations. Kybernetika, Tome 34 (1998) no. 3, p. [265]. http://geodesic.mathdoc.fr/item/KYB_1998__34_3_a1/