Maximum likelihood principle and $I$-divergence: discrete time observations
Kybernetika, Tome 34 (1998) no. 3, p. [265].

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The paper investigates the relation between maximum likelihood and minimum $I$-divergence estimates of unknown parameters and studies the asymptotic behaviour of the likelihood ratio maximum. Observations are assumed to be done in the discrete time.
Classification : 62B10, 62F12, 62M10
Keywords: maximum likelihood estimate; information divergence; exponential families; discrete time process; autoregressive sequences
@article{KYB_1998__34_3_a1,
     author = {Mich\'alek, Ji\v{r}{\'\i}},
     title = {Maximum likelihood principle and $I$-divergence: discrete time observations},
     journal = {Kybernetika},
     pages = {[265]},
     publisher = {mathdoc},
     volume = {34},
     number = {3},
     year = {1998},
     mrnumber = {1640966},
     zbl = {1274.62066},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1998__34_3_a1/}
}
TY  - JOUR
AU  - Michálek, Jiří
TI  - Maximum likelihood principle and $I$-divergence: discrete time observations
JO  - Kybernetika
PY  - 1998
SP  - [265]
VL  - 34
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KYB_1998__34_3_a1/
LA  - en
ID  - KYB_1998__34_3_a1
ER  - 
%0 Journal Article
%A Michálek, Jiří
%T Maximum likelihood principle and $I$-divergence: discrete time observations
%J Kybernetika
%D 1998
%P [265]
%V 34
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KYB_1998__34_3_a1/
%G en
%F KYB_1998__34_3_a1
Michálek, Jiří. Maximum likelihood principle and $I$-divergence: discrete time observations. Kybernetika, Tome 34 (1998) no. 3, p. [265]. http://geodesic.mathdoc.fr/item/KYB_1998__34_3_a1/