@article{KYB_1994_30_6_a13,
author = {Aeyels, Dirk and Sepulchre, R.},
title = {On the convergence of a time-variant linear differential equation arising in identification},
journal = {Kybernetika},
pages = {715--723},
year = {1994},
volume = {30},
number = {6},
mrnumber = {1323672},
zbl = {0832.93051},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1994_30_6_a13/}
}
Aeyels, Dirk; Sepulchre, R. On the convergence of a time-variant linear differential equation arising in identification. Kybernetika, Tome 30 (1994) no. 6, pp. 715-723. http://geodesic.mathdoc.fr/item/KYB_1994_30_6_a13/
[1] D. Aeyels: Stability of nonautonomous systems by Liapunov's direct method. In: the Proceedings of the Workshop Geometry in Nonlinear Control, Banach Center Publications, June 1993, to appear.
[2] B. D. O. Anderson: Exponential Stability of linear equations arising in adaptive identification. IEEE Trans. Automat. Control 22 (1977), 84-88. | MR | Zbl
[3] H. K. Khalil: Nonlinear Systems. McMillan Publishing Company, New York 1992. | MR | Zbl
[4] T. Kohonen: Self-organization and associative memory. (Springer Ser. Inform. Sci. 8.) Springer-Verlag, Berlin 1988. | MR | Zbl
[5] G. Kreisselmeier: Adaptive observers with exponential rate of convergence. IEEE Trans. Automat. Control 22 (1977), 1, 2-8. | MR | Zbl
[6] K. S. Narendra, A. M. Annaswamy: Persistent excitation in adaptive systems. Internat. J. Control 45 (1987), 1, 127-160. | MR | Zbl
[7] N. Rouche P. Habets, M. Laloy: Stability Theory by Liapunov's Direct Method. Springer-Verlag, New York 1977. | MR