On the convergence of a time-variant linear differential equation arising in identification
Kybernetika, Tome 30 (1994) no. 6, pp. 715-723 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34D99, 34H05, 93B30, 93C99, 93D05, 93D20
@article{KYB_1994_30_6_a13,
     author = {Aeyels, Dirk and Sepulchre, R.},
     title = {On the convergence of a time-variant linear differential equation arising in identification},
     journal = {Kybernetika},
     pages = {715--723},
     year = {1994},
     volume = {30},
     number = {6},
     mrnumber = {1323672},
     zbl = {0832.93051},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1994_30_6_a13/}
}
TY  - JOUR
AU  - Aeyels, Dirk
AU  - Sepulchre, R.
TI  - On the convergence of a time-variant linear differential equation arising in identification
JO  - Kybernetika
PY  - 1994
SP  - 715
EP  - 723
VL  - 30
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_1994_30_6_a13/
LA  - en
ID  - KYB_1994_30_6_a13
ER  - 
%0 Journal Article
%A Aeyels, Dirk
%A Sepulchre, R.
%T On the convergence of a time-variant linear differential equation arising in identification
%J Kybernetika
%D 1994
%P 715-723
%V 30
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_1994_30_6_a13/
%G en
%F KYB_1994_30_6_a13
Aeyels, Dirk; Sepulchre, R. On the convergence of a time-variant linear differential equation arising in identification. Kybernetika, Tome 30 (1994) no. 6, pp. 715-723. http://geodesic.mathdoc.fr/item/KYB_1994_30_6_a13/

[1] D. Aeyels: Stability of nonautonomous systems by Liapunov's direct method. In: the Proceedings of the Workshop Geometry in Nonlinear Control, Banach Center Publications, June 1993, to appear.

[2] B. D. O. Anderson: Exponential Stability of linear equations arising in adaptive identification. IEEE Trans. Automat. Control 22 (1977), 84-88. | MR | Zbl

[3] H. K. Khalil: Nonlinear Systems. McMillan Publishing Company, New York 1992. | MR | Zbl

[4] T. Kohonen: Self-organization and associative memory. (Springer Ser. Inform. Sci. 8.) Springer-Verlag, Berlin 1988. | MR | Zbl

[5] G. Kreisselmeier: Adaptive observers with exponential rate of convergence. IEEE Trans. Automat. Control 22 (1977), 1, 2-8. | MR | Zbl

[6] K. S. Narendra, A. M. Annaswamy: Persistent excitation in adaptive systems. Internat. J. Control 45 (1987), 1, 127-160. | MR | Zbl

[7] N. Rouche P. Habets, M. Laloy: Stability Theory by Liapunov's Direct Method. Springer-Verlag, New York 1977. | MR