Invariants and canonical forms for linear multivariable systems under the action of orthogonal transformation groups
Kybernetika, Tome 17 (1981) no. 5, pp. 413-424 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 93B10, 93B17, 93B40, 93C05, 93C35
@article{KYB_1981_17_5_a6,
     author = {Konstantinov, M. M. and Petkov, P. Hr. and Christov, N. D.},
     title = {Invariants and canonical forms for linear multivariable systems under the action of orthogonal transformation groups},
     journal = {Kybernetika},
     pages = {413--424},
     year = {1981},
     volume = {17},
     number = {5},
     mrnumber = {648213},
     zbl = {0474.93020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1981_17_5_a6/}
}
TY  - JOUR
AU  - Konstantinov, M. M.
AU  - Petkov, P. Hr.
AU  - Christov, N. D.
TI  - Invariants and canonical forms for linear multivariable systems under the action of orthogonal transformation groups
JO  - Kybernetika
PY  - 1981
SP  - 413
EP  - 424
VL  - 17
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/KYB_1981_17_5_a6/
LA  - en
ID  - KYB_1981_17_5_a6
ER  - 
%0 Journal Article
%A Konstantinov, M. M.
%A Petkov, P. Hr.
%A Christov, N. D.
%T Invariants and canonical forms for linear multivariable systems under the action of orthogonal transformation groups
%J Kybernetika
%D 1981
%P 413-424
%V 17
%N 5
%U http://geodesic.mathdoc.fr/item/KYB_1981_17_5_a6/
%G en
%F KYB_1981_17_5_a6
Konstantinov, M. M.; Petkov, P. Hr.; Christov, N. D. Invariants and canonical forms for linear multivariable systems under the action of orthogonal transformation groups. Kybernetika, Tome 17 (1981) no. 5, pp. 413-424. http://geodesic.mathdoc.fr/item/KYB_1981_17_5_a6/

[1] D. G. Luenberger: Canonical forms for linear multivariable systems. IEEE Trans. Autom. Control AC-12 (1967), 290-293. | MR

[2] P. Brunovsk7: A classification of linear controllable systems. Ky bernetika 3 (1970), 173 - 187. | MR

[3] R. E. Kalman: Kronecker invariants and feedback. Proc. NRL-MRC Conf. (L. Weiss Ed.), Academic Press, N.Y. 1972, pp. 459-471. | MR | Zbl

[4] V. M. Popov: Invariant description of linear time-invariant controllable systems. SIAM J. Control 10 (1972), 252-264. | MR | Zbl

[5] M. J. Denham: Canonical forms for the identification of linear multivariable systems. IEEE Trans. Autom. Control AC-19 (1974), 646-656. | MR

[6] K. Glover J. C. Willems: Parametrization of linear dynamical systems: Canonical forms and identifiability. IEEE Trans. Autom. Control AC-19 (1974), 640-646. | MR

[7] J. Rissanen: Basis of invariants and canonical forms for linear dynamic systems. Automatica 70 (1974), 175-182. | MR | Zbl

[8] O. H. Bosgra A. J. J. Van der Weiden: Input-output invariants for linear multivariable systems. IEEE Trans. Autom. Control AC-25 (1980), 20-36. | MR

[9] M. M. Konstantinov P. Hr. Petkov N. D. Christov: Synthesis of linear systems with desired equivalent form. J. Comp. & Appl. Math. 6 (1980), 27-35. | MR

[10] M. M. Konstantinov S. P. Patarinski P. Hr. Petkov N. D. Christov: Synthesis of linear control systems with prescribed dynamics. Proc. First Internat. Conf. on Math. Modeling, Aug. 1977 St. Louis (Miss.) vol. 3, pp. 1639-1648.

[11] M. M. Konstantinov P. Hr. Petkov N. D. Christov: The serial canonical form and synthesis of linear multivariable systems. Podstawy Sterowania 9 (1979), 295 - 308. | MR

[12] M. M. Konstantinov P. Hr. Petkov N. D. Christov: Synthesis of linear multivariable systems with prescribed equivalent form. Systems Sci. 5 (1979), 381 - 394. | MR

[13] D. Jordan B. Sridhar: An efficient algorithm for calculation of Luenberger canonical form. IEEE Trans. Autom. Control AC-18 (1973), 292-295. | MR

[14] K. B. Datta: An algorithm to compute canonical forms in multivariable control systems. IEEE Trans. Autom. Control AC-22 (1977), 129-132. | MR | Zbl

[15] J. Hickin N. K. Sinha: An efficient algorithm for transformation to canonical forms. IEEE Trans. Autom. Control AC-22 (1977), 652-653.

[16] E. J. Davison W. Gesing S. H. Wang: An algorithm for obtaining the minimal realization of a linear time-invariant system and determining if a system is stabilizable-detectable. Proc. 1977 IEEE Conf. on Dec. & Control, pp. 777-781. | MR

[17] J. D. Aplevich: Direct computation of canonical forms for linear systems by elementary matrix operations. IEEE Trans. Autom. Control AC-19 (1974), 124-126. | MR | Zbl

[18] B. T. Smith J. M. Boyle J. J. Dongarra B. S. Garbow Y. Ikebe V. C. Klema C. B. Moler: Matrix Eigensystem Routines-EISPACK Guide. Springer-Verlag, Berlin 1976. | MR

[19] J. J. Dongarra J. R. Bunch C. B. Moler G. W.Stewart: LINPACK Users' Guide. SIAM, Philadelphia 1979.