The triangle inequality for some spaces of measurable operators
Konstruktivnaya Teoriya Funktsii i Funktsional'nyi Analiz, Konstruktivnaya Teoriya Funktsii i Funktsional'nyi Analiz (1992), pp. 23-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{KUKTF_1992_a2,
     author = {A. M. Bikchentaev},
     title = {The triangle inequality for some spaces of measurable operators},
     journal = {Konstruktivnaya Teoriya Funktsii i Funktsional'nyi Analiz},
     pages = {23--32},
     publisher = {mathdoc},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/KUKTF_1992_a2/}
}
TY  - JOUR
AU  - A. M. Bikchentaev
TI  - The triangle inequality for some spaces of measurable operators
JO  - Konstruktivnaya Teoriya Funktsii i Funktsional'nyi Analiz
PY  - 1992
SP  - 23
EP  - 32
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KUKTF_1992_a2/
LA  - ru
ID  - KUKTF_1992_a2
ER  - 
%0 Journal Article
%A A. M. Bikchentaev
%T The triangle inequality for some spaces of measurable operators
%J Konstruktivnaya Teoriya Funktsii i Funktsional'nyi Analiz
%D 1992
%P 23-32
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KUKTF_1992_a2/
%G ru
%F KUKTF_1992_a2
A. M. Bikchentaev. The triangle inequality for some spaces of measurable operators. Konstruktivnaya Teoriya Funktsii i Funktsional'nyi Analiz, Konstruktivnaya Teoriya Funktsii i Funktsional'nyi Analiz (1992), pp. 23-32. http://geodesic.mathdoc.fr/item/KUKTF_1992_a2/

[1] Bikchentaev A. M., “O nekommutativnykh funktsionalnykh prostranstvakh”, Funktsionalnyi analiz. Mezhvuz. sb. nauch. tr., 27, Ulyanovsk, 1987, 33–43 | MR

[2] Bikchentaev A. M. Neravenstvo treugolnika dlya $F$-normirovannogo prostranstva izmerimykh operatorov, Kazan, 1988, 18 pp., Rukopis predstavlena Kazanskim un-tom. Dep. v VINITI 4 iyulya 1988, No 5376-V88

[3] Keldysh M. V., “O sobstvennykh znacheniyakh i sobstvennykh funktsiyakh nekotorykh klassov nesamosopryazhennykh uravnenii”, Dokl. AN SSSR, 77:1 (1951), 11–14 | Zbl

[4] Sukochev F. A., Chilin V. I., “Opisanie zamknutykh vypuklykh simmetrichnykh mnozhestv izmerimykh operatorov”, Izv. vuzov. Matem., 1987, no. 10, 31–37 | MR | Zbl

[5] Tikhonov O. E., “Vypuklye funktsii i neravenstva dlya sleda”, Konstruktivnaya teoriya funktsii i funktsionalnyi analiz, 6, Kazan, 1987, 77–82 | MR | Zbl

[6] Chilin V. I., “Abstraktnaya kharakterizatsiya nekommutativnykh prostranstv Orlicha”, Izv. AN UzSSR. Ser. fiz.-mat. n., 1986, no. 5, 33–39 | MR | Zbl

[7] Dixmier J., “Formes lineares sur un anneau d'operateurs”, Bull. Soc. Math. France, 81 (1953), 9–39 | MR | Zbl

[8] Fack T., Kosaki H., “Generalized $s$-numbers of $\tau$-measurable operators”, Pacific J. Math., 123:1 (1986), 269–300 | DOI | MR | Zbl

[9] Hansen F., “An operator inequality”, Math. Annalen, 246:3 (1980), 249–250 | DOI | MR | Zbl

[10] Hansen F., Pedersen G. K., “Jensen's inequality for operators and Löwner's theorem”, Math. Annalen, 258:3 (1982), 229–241 | DOI | MR | Zbl

[11] Musielak J., “Modular spaces and Orlicz spaces”, Lect. Notes Math., 1034, 1983 | MR | Zbl

[12] Rolewich S., Metric linear spaces, Monografie Math., 56, PWN, Warshawa, 1972

[13] Yeadon F. J., “Convergence of measurable operators”, Proc. Cambridge Phil. Soc., 74:2 (1973), 257–268 | DOI | MR | Zbl

[14] Yeadon F. J., “Non commutative $L^p$-spaces”, Math. Proc. Cambridge Phil. Soc., 77:1 (1975), 91–102 | DOI | MR | Zbl