On sufficient conditions for the univalence and uniqueness of solutions of inverse boundary value problems
Konstruktivnaya Teoriya Funktsii i Funktsional'nyi Analiz, Konstruktivnaya Teoriya Funktsii i Funktsional'nyi Analiz (1990), pp. 3-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{KUKTF_1990_a0,
     author = {F. Kh. Arslanov},
     title = {On sufficient conditions for the univalence and uniqueness of solutions of inverse boundary value problems},
     journal = {Konstruktivnaya Teoriya Funktsii i Funktsional'nyi Analiz},
     pages = {3--13},
     publisher = {mathdoc},
     year = {1990},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/KUKTF_1990_a0/}
}
TY  - JOUR
AU  - F. Kh. Arslanov
TI  - On sufficient conditions for the univalence and uniqueness of solutions of inverse boundary value problems
JO  - Konstruktivnaya Teoriya Funktsii i Funktsional'nyi Analiz
PY  - 1990
SP  - 3
EP  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KUKTF_1990_a0/
LA  - ru
ID  - KUKTF_1990_a0
ER  - 
%0 Journal Article
%A F. Kh. Arslanov
%T On sufficient conditions for the univalence and uniqueness of solutions of inverse boundary value problems
%J Konstruktivnaya Teoriya Funktsii i Funktsional'nyi Analiz
%D 1990
%P 3-13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KUKTF_1990_a0/
%G ru
%F KUKTF_1990_a0
F. Kh. Arslanov. On sufficient conditions for the univalence and uniqueness of solutions of inverse boundary value problems. Konstruktivnaya Teoriya Funktsii i Funktsional'nyi Analiz, Konstruktivnaya Teoriya Funktsii i Funktsional'nyi Analiz (1990), pp. 3-13. http://geodesic.mathdoc.fr/item/KUKTF_1990_a0/

[1] Tumashev G. G., Nuzhin M. T., Obratnye kraevye zadachi i ikh prilozheniya, Izd-vo Kazan. un-ta, Kazan, 1965 | MR

[2] Gakhov F .D., Kraevye zadachi, Fizmatgiz, M., 1963 | MR

[3] Avkhadiev F. G., Aksentev L. A., “Osnovnye rezultaty v dostatochnykh usloviyakh odnolistnosti analiticheskikh funktsii”, UMN, 30:4 (1975), 3–60 | MR

[4] Arslanov F. Kh., Nekotorye dostatochnye usloviya odnolistnosti i edinstvennosti reshenii obratnykh kraevykh zadach, Kazan. un-t, Kazan, 1988, 19 pp., Dep. v VINITI 21.03.1988, No 2174-B88

[5] Privalov I. I., Granichnye svoistva analiticheskii funktsii, GITTL, M., 1950

[6] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR

[7] Avkhadiev F. G., Nekotorye dostatochnye usloviya odnolistnosti i ikh primenenie k obratnym kraevym zadacham, Avtoref. dis. kand. fiz.-mat. nauk, Kazan, 1972

[8] Avkhadiev F. G., Aksentev L. A., Elizarov A. M., “Dostatochnye usloviya konechnolistnosti analiticheskikh funktsii i ikh prilozheniya”, Matematicheskii analiz, 25, M., 1987, 3–120 | MR | Zbl

[9] Ahlfors L. V., “Sufficient conditions for quasi-conformal extension”, Ann. Math. Studies, 79 (1974), 23–29 | MR

[10] Aksentev L. A., “Ob odnolistnoi razreshimosti obratnykh kraevykh zadach”, Tr. seminara po kraevym zadacham, 11, Izd-vo Kazan. un-ta, Kazan, 1974, 9–18 | MR

[11] Aksentev L. A., Nezhmetdinov I. R., “Dostatochnye usloviya odnolistnosti nekotorykh integralnykh predstavlenii”, Tr. seminara po kraevym zadacham, 18, Izd-vo Kazan. un-ta, Kazan, 1982, 3–11 | MR

[12] Kaplan W., “Close-to-convex schlicht functions”, Michigan Math. J., 1:2 (1952), 169–185 | DOI | MR | Zbl

[13] Kudryashov C. H., “O edinstvennosti resheniya vneshnikh obratnykh kraevykh zadach”, Materialy 4-i nauch. konf. aspirantov Rostov. un-ta, Rostov-n/D., 1962, 56–59