Voir la notice de l'article provenant de la source Math-Net.Ru
@article{KUKTF_1985_a8, author = {F. F. Maier}, title = {Subordination in certain classes of analytic functions and the univalent solvability of inverse boundary value problems}, journal = {Konstruktivnaya Teoriya Funktsii i Funktsional'nyi Analiz}, pages = {61--72}, publisher = {mathdoc}, year = {1985}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/KUKTF_1985_a8/} }
TY - JOUR AU - F. F. Maier TI - Subordination in certain classes of analytic functions and the univalent solvability of inverse boundary value problems JO - Konstruktivnaya Teoriya Funktsii i Funktsional'nyi Analiz PY - 1985 SP - 61 EP - 72 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/KUKTF_1985_a8/ LA - ru ID - KUKTF_1985_a8 ER -
%0 Journal Article %A F. F. Maier %T Subordination in certain classes of analytic functions and the univalent solvability of inverse boundary value problems %J Konstruktivnaya Teoriya Funktsii i Funktsional'nyi Analiz %D 1985 %P 61-72 %I mathdoc %U http://geodesic.mathdoc.fr/item/KUKTF_1985_a8/ %G ru %F KUKTF_1985_a8
F. F. Maier. Subordination in certain classes of analytic functions and the univalent solvability of inverse boundary value problems. Konstruktivnaya Teoriya Funktsii i Funktsional'nyi Analiz, Konstruktivnaya Teoriya Funktsii i Funktsional'nyi Analiz (1985), pp. 61-72. http://geodesic.mathdoc.fr/item/KUKTF_1985_a8/
[1] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966, 628 pp. | MR
[2] Miller S. S., Mocanu P. T., “Differential subordinations and univalent functions”, Michigan Math. J., 28:2 (1981), 157–172 | DOI | MR
[3] Avkhadiev F. G., “Radiusy vypuklosti i pochti vypuklosti nekotorykh integralnykh predstvalenii”, Mat. zametki, 7:5 (1970), 581–592 | Zbl
[4] Avkhadiev F. G., “K slaboi i silnoi problemam odnolistnosti v obratnykh kraevykh zadachakh”, Tr. seminara po kraevym zadacham, 10, Izd-vo Kazanskogo un-ta, Kazan, 1973, 3–10 | MR | Zbl
[5] Kheiman U., Kennedi P., Subgarmonicheskie funktsii, Mir, M., 1980, 304 pp.
[6] Avkhadiev F. G., Gaiduk V. N., “Primenenie pochti vypuklykh funktsii k obratnym kraevym zadacham”, Izv. vuzov. Matem., 1968, no. 6, 3–10 | MR | Zbl
[7] Gaiduk V. N., “Nekotorye usloviya odnolistnosti resheniya obratnoi kraevoi zadachi dlya $n$-simmetrichnykh funktsii”, Tr. seminara po kraevym zadacham, 8, Izd-vo Kazanskogo un-ta, Kazan, 1971, 55–58 | MR | Zbl
[8] Patsevich E. L., “Otsenki dlya garmonicheskikh v kruge funktsii i ikh primenenie k obratnym kraevym zadacham”, Tr. seminara po kraevym zadacham, 11, Izd-vo Kazanskogo un-ta, Kazan, 1974, 144–148 | MR
[9] Nezhmetdinov I. R., Geometricheskie svoistva reshenii osnovnykh obratnykh kraevykh zadach, Dep. v VINITI 22 dekabrya 1978 g., No 3889-78, Rukopis predstavlena Kazansk. un-tom, Kazan, 1978, 18 pp.
[10] Tumashev G. G., Nuzhin M. T., Obratnye kraevye zadachi i ikh prilozheniya, Izd-vo Kazanskogo un-ta, Kazan, 1965, 333 pp. | MR
[11] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977, 640 pp. | MR
[12] Gradshtein I. O., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, M., 1963, 1100 pp. | MR
[13] Paatero, V., “Über die konforme Abbildung von Gebieten, deren Ränder von beschränkter Drehung sind”, Annales Acad. Sc. Fennicae, 33:9 | Zbl
[14] Kaplan W., “Close-to-convex schlicht functions”, Michigan Math. J., 1(1952) (1953), 169–185 | MR
[15] Aksentev L. A., “Ob usloviyakh razreshimosti i usloviyakh odnolistnosti”, Tr. seminara po obratnym kraevym zadacham, 2, Izd-vo Kazanskogo un-ta, Kazan, 1964, 12–20
[16] Nezhmetdinov I. R., Geometricheskie svoistva reshenii obratnykh kraevykh zadach, Avgoref. dis. ... kand. fiz.-mat. nauk, Kazan, 1979, 14 pp.
[17] Mikka V. P., “Dva dostatochnykh usloviya odnolistnosti analiticheskikh funktsii”, Mat. zametki, 19:3 (1976), 331–346 | MR | Zbl