Conditions for univalence of the solution of inverse boundary value problems in the case of an infinite unknown contour
Konstruktivnaya Teoriya Funktsii i Funktsional'nyi Analiz, Konstruktivnaya Teoriya Funktsii i Funktsional'nyi Analiz (1985), pp. 31-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{KUKTF_1985_a3,
     author = {P. M. Zinov'ev and F. F. Maier},
     title = {Conditions for univalence of the solution of inverse boundary value problems in the case of an infinite unknown contour},
     journal = {Konstruktivnaya Teoriya Funktsii i Funktsional'nyi Analiz},
     pages = {31--40},
     publisher = {mathdoc},
     year = {1985},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/KUKTF_1985_a3/}
}
TY  - JOUR
AU  - P. M. Zinov'ev
AU  - F. F. Maier
TI  - Conditions for univalence of the solution of inverse boundary value problems in the case of an infinite unknown contour
JO  - Konstruktivnaya Teoriya Funktsii i Funktsional'nyi Analiz
PY  - 1985
SP  - 31
EP  - 40
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KUKTF_1985_a3/
LA  - ru
ID  - KUKTF_1985_a3
ER  - 
%0 Journal Article
%A P. M. Zinov'ev
%A F. F. Maier
%T Conditions for univalence of the solution of inverse boundary value problems in the case of an infinite unknown contour
%J Konstruktivnaya Teoriya Funktsii i Funktsional'nyi Analiz
%D 1985
%P 31-40
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KUKTF_1985_a3/
%G ru
%F KUKTF_1985_a3
P. M. Zinov'ev; F. F. Maier. Conditions for univalence of the solution of inverse boundary value problems in the case of an infinite unknown contour. Konstruktivnaya Teoriya Funktsii i Funktsional'nyi Analiz, Konstruktivnaya Teoriya Funktsii i Funktsional'nyi Analiz (1985), pp. 31-40. http://geodesic.mathdoc.fr/item/KUKTF_1985_a3/

[1] Tumashev G. G., Nuzhin M. T., Obratnye kraevye zadachi i ikh prilozheniya, 2-e izd., pererab. i dop., Izd-vo Kazanskogo un-ta, Kazan, 1965, 333 pp. | MR

[2] Gakhov F. D., Kraevye zadachi, 3-e izd., pererab. i dop., Nauka, M., 1977, 640 pp. | MR

[3] Aksentev L. A., Ilinskii N. B., Nuzhin M. T., Salimov R. B., Tumashev G. G., “Teoriya obratnykh kraevykh zadach dlya analiticheskikh funktsii i ee prilozheniya”, Itogi nauki i tekhniki. Matematicheskii analiz, 18, VINITI, M., 1980, 67–103 | MR

[4] Nuzhin M. T., “Otdelnye sluchai obratnykh kraevykh zadach”, Uchen. zap. Kazan. un-ta, 113:10 (1953), 3–8 | MR

[5] Aksentev L. A., “Ob odnolistnoi razreshimosti obratnykh kraevykh zadach”, Tr. semin. po kraevym zadacham, 10, Izd-vo Kazanskogo un-ta, Kazan, 1973, 11–24 | MR

[6] Avkhadiev F. G., “K slaboi i silnoi problemam odnolistnosti v obratnykh kraevykh zadachakh”, Tr. semin. po kraevym zadacham, 10, Izd-vo Kazanskogo un-ta, Kazan, 1973, 3–10

[7] Baernstein A., II, “Integral means, univalent functions and circular symmetrization”, Acta Math., 133 (1974), 139–169 | DOI | MR

[8] Aksentev L. A., “Tochnye otsenki garmonicheskikh v kruge funktsii”, Izv. vuzov. Matem., 1968, no. 3, 3–8 | MR

[9] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, 4-e izd., pererab., Fizmatgiz, M., 1962, 1100 pp. | MR

[10] Aksentev L. A., “Dostatochnye usloviya odnolistnosti resheniya obratnoi zadachi teorii filtratsii”, UMN, 14:4 (1959), 133–140 | MR | Zbl

[11] Aksentev L. A., Shabalin P. L., “Usloviya odnolistnosti s kvazikonformnym prodolzheniem i ikh primenenie”, Izv. vuzov. Matem., 1983, no. 2, 6–14 | MR

[12] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, 2-e izd., Nauka, M., 1966 | MR

[13] Alfors L., Lektsii po kvazikonformnym otobrazheniyam, Mir, M., 1969, 183 pp. | MR