Detailed proof of regularity of a~probability measure in continuous semifinite algebras
Konstruktivnaya Teoriya Funktsii i Funktsional'nyi Analiz, Konstruktivnaya Teoriya Funktsii i Funktsional'nyi Analiz (1983), pp. 41-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{KUKTF_1983_a6,
     author = {M. S. Matveichuk},
     title = {Detailed proof of regularity of a~probability measure in continuous semifinite algebras},
     journal = {Konstruktivnaya Teoriya Funktsii i Funktsional'nyi Analiz},
     pages = {41--82},
     publisher = {mathdoc},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/KUKTF_1983_a6/}
}
TY  - JOUR
AU  - M. S. Matveichuk
TI  - Detailed proof of regularity of a~probability measure in continuous semifinite algebras
JO  - Konstruktivnaya Teoriya Funktsii i Funktsional'nyi Analiz
PY  - 1983
SP  - 41
EP  - 82
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KUKTF_1983_a6/
LA  - ru
ID  - KUKTF_1983_a6
ER  - 
%0 Journal Article
%A M. S. Matveichuk
%T Detailed proof of regularity of a~probability measure in continuous semifinite algebras
%J Konstruktivnaya Teoriya Funktsii i Funktsional'nyi Analiz
%D 1983
%P 41-82
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KUKTF_1983_a6/
%G ru
%F KUKTF_1983_a6
M. S. Matveichuk. Detailed proof of regularity of a~probability measure in continuous semifinite algebras. Konstruktivnaya Teoriya Funktsii i Funktsional'nyi Analiz, Konstruktivnaya Teoriya Funktsii i Funktsional'nyi Analiz (1983), pp. 41-82. http://geodesic.mathdoc.fr/item/KUKTF_1983_a6/

[1] Makki D., Lektsii po matematicheskim osnovam kvantovoi mekhaniki, Mir, M., 1968 | MR

[2] Gleason A. M., “Measures on the closed subspaces of a Hilbert space”, J. Math. Mech., 6 (1957), 885–893 | MR | Zbl

[3] Topping D., Lectures on von Neumann algebras, van Nostrand, London, 1971 | Zbl

[4] Matveichuk M. S., “Opisanie konechnykh mer v polukonechnykh algebrakh”, Funktsionalnyi analiz i ego prilozheniya, 15:3 (1981), 41–53 | MR | Zbl

[5] Gunson J., “Physical states on quantum logics. I”, Ann. Inst. H. Poincaré Sect. A (N.S.), 17 (1972), 295–311 | MR

[6] Halmos P. R., “Two subspaces”, Trans. Amer. Math. Soc., 144 (1969), 381–389 | DOI | MR | Zbl

[7] Matveichuk M. S., “Odna teorema o sostoyaniyakh na kvantovykh logikakh. II”, Teoreticheskaya i matematicheskaya fizika, 48:2 (1981), 261–265 | MR | Zbl

[8] Wong Yung-chow, Isoclinic $n$-planes in Euclidean $2n$-space, Clifford parallels in elliptic $(2n-1)$-space, and the Hurwitz matrix equations, Mem. Amer. Math. Soc., no. 41, 1961, iii+112 pp. | MR

[9] Lodkin A. A., “Vsyakaya mera na proektorakh $W^*$-algebry prodolzhaetsya do sostoyaniya”, Funktsionalnyi analiz i ego prilozheniya, 8:4 (1974), 54–58 | MR | Zbl

[10] Dixmier J., Les algèbres d'opérateurs dans l'espace hilbertien (Alg`ebres de von Neumann), Gauthier-Villars, Paris, 1957 | MR | Zbl

[11] Naimark M. A., Normirovannye koltsa, Nauka, M., 1968 | MR | Zbl