Quasilinear Parabolic Problem with $p(x)$-Laplacian Operator by Topological Degree
Kragujevac Journal of Mathematics, Tome 47 (2023) no. 4, p. 523

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We prove the existence of a weak solution for the quasilinear parabolic initial boundary value problem associated to the equation $ u_{t}-\Delta_{p(x)}u=h, $ by using the Topological degree theory for operators of the form $L+S$, where $L$ is a linear densely defined maximal monotone map and $S$ is a bounded demicontinuous map of class $(S_+)$ with respect to the domain of $L$.
Classification : 35K59 46E35, 47H11, DOI
Keywords: quasilinear parabolic problems, variable exponents, topological degree, $p(x)$-Laplacian
@article{KJM_2023_47_4_a2,
     author = {Mustapha Ait Hammou},
     title = {Quasilinear {Parabolic} {Problem} with $p(x)${-Laplacian} {Operator} by {Topological} {Degree}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {523 },
     publisher = {mathdoc},
     volume = {47},
     number = {4},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2023_47_4_a2/}
}
TY  - JOUR
AU  - Mustapha Ait Hammou
TI  - Quasilinear Parabolic Problem with $p(x)$-Laplacian Operator by Topological Degree
JO  - Kragujevac Journal of Mathematics
PY  - 2023
SP  - 523 
VL  - 47
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2023_47_4_a2/
LA  - en
ID  - KJM_2023_47_4_a2
ER  - 
%0 Journal Article
%A Mustapha Ait Hammou
%T Quasilinear Parabolic Problem with $p(x)$-Laplacian Operator by Topological Degree
%J Kragujevac Journal of Mathematics
%D 2023
%P 523 
%V 47
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2023_47_4_a2/
%G en
%F KJM_2023_47_4_a2
Mustapha Ait Hammou. Quasilinear Parabolic Problem with $p(x)$-Laplacian Operator by Topological Degree. Kragujevac Journal of Mathematics, Tome 47 (2023) no. 4, p. 523 . http://geodesic.mathdoc.fr/item/KJM_2023_47_4_a2/