Quasilinear Parabolic Problem with $p(x)$-Laplacian Operator by Topological Degree
Kragujevac Journal of Mathematics, Tome 47 (2023) no. 4, p. 523 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We prove the existence of a weak solution for the quasilinear parabolic initial boundary value problem associated to the equation $ u_{t}-\Delta_{p(x)}u=h, $ by using the Topological degree theory for operators of the form $L+S$, where $L$ is a linear densely defined maximal monotone map and $S$ is a bounded demicontinuous map of class $(S_+)$ with respect to the domain of $L$.
Classification : 35K59 46E35, 47H11, DOI
Keywords: quasilinear parabolic problems, variable exponents, topological degree, $p(x)$-Laplacian
@article{KJM_2023_47_4_a2,
     author = {Mustapha Ait Hammou},
     title = {Quasilinear {Parabolic} {Problem} with $p(x)${-Laplacian} {Operator} by {Topological} {Degree}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {523 },
     publisher = {mathdoc},
     volume = {47},
     number = {4},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2023_47_4_a2/}
}
TY  - JOUR
AU  - Mustapha Ait Hammou
TI  - Quasilinear Parabolic Problem with $p(x)$-Laplacian Operator by Topological Degree
JO  - Kragujevac Journal of Mathematics
PY  - 2023
SP  - 523 
VL  - 47
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2023_47_4_a2/
LA  - en
ID  - KJM_2023_47_4_a2
ER  - 
%0 Journal Article
%A Mustapha Ait Hammou
%T Quasilinear Parabolic Problem with $p(x)$-Laplacian Operator by Topological Degree
%J Kragujevac Journal of Mathematics
%D 2023
%P 523 
%V 47
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2023_47_4_a2/
%G en
%F KJM_2023_47_4_a2
Mustapha Ait Hammou. Quasilinear Parabolic Problem with $p(x)$-Laplacian Operator by Topological Degree. Kragujevac Journal of Mathematics, Tome 47 (2023) no. 4, p. 523 . http://geodesic.mathdoc.fr/item/KJM_2023_47_4_a2/