Some $L_1$-Biconservative Lorentzian Hypersurfaces in the Lorentz-Minkowski Spaces
Kragujevac Journal of Mathematics, Tome 47 (2023) no. 2, p. 229
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
The biconservative hypersurfaces of Euclidean spaces have conservative stress-energy with respect to the bienergy functional. We study Lorentzian hypersurfaces of Minkowski spaces, satisfying an extended condition (namely, $L_1$-biconservativity condition), where $L_1$ (as an extension of the Laplace operator $\Delta=L_0$) is the $\textit{linearized operator}$ arisen from the first normal variation of $2$nd mean curvature vector field. A Lorentzian hypersurface $\x{}: M_1^n\rightarrowŁ^{n+1}$ is said to be $L_1$-biconservative if the tangent component of vector field $L_1^2x$ is identically zero. The geometric motivation of this subject is a well-known conjecture of Bang-Yen Chen saying that the only biharmonic submanifolds (i.e., satisfying condition $L_0^2 x=0$) of Euclidean spaces are the minimal ones. We discuss on $L_1$-biconservative Lorentzian hypersurfaces of the Lorentz-Minkowski space $Ł^{n+1}$. After illustrating some examples, we prove that these hypersurfaces, with at most two distinct principal curvatures and constant ordinary mean curvature, have constant $2$nd mean curvature.
Classification :
53C43, 53C40, 53C42, 58B25
Keywords: Lorentzian hypersurface, $L_1$-biconservative, Lorentz-Minkowski space
Keywords: Lorentzian hypersurface, $L_1$-biconservative, Lorentz-Minkowski space
@article{KJM_2023_47_2_a4,
author = {Firooz Pashaie},
title = {Some $L_1${-Biconservative} {Lorentzian} {Hypersurfaces} in the {Lorentz-Minkowski} {Spaces}},
journal = {Kragujevac Journal of Mathematics},
pages = {229 },
year = {2023},
volume = {47},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2023_47_2_a4/}
}
Firooz Pashaie. Some $L_1$-Biconservative Lorentzian Hypersurfaces in the Lorentz-Minkowski Spaces. Kragujevac Journal of Mathematics, Tome 47 (2023) no. 2, p. 229 . http://geodesic.mathdoc.fr/item/KJM_2023_47_2_a4/