Computing the Total Vertex Irregularity Strength Associated with Zero Divisor Graph of Commutative Ring
Kragujevac Journal of Mathematics, Tome 46 (2022) no. 5, p. 711 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $R$ be a commutative ring and $Z(R)$ be the set of all zero divisors of $R$. $\Gamma(R)$ is said to be a zero divisor graph if $x,y\in V(\Gamma(R))=Z(R)$ and $(x,y)\in E(\Gamma(R))$ if and only if $x.y=0.$ In this paper, we determine the total vertex irregularity strength of zero divisor graphs associated with the commutative rings $\mathbb{Z}_{p^2} ×Z_{q}$ for $p,q$ prime numbers.
Classification : 05C78 05C25, 05C12
Keywords: Total vertex irregularity strength, zero divisor graph, commutative ring
@article{KJM_2022_46_5_a3,
     author = {Ali Ahmad},
     title = {Computing the {Total} {Vertex} {Irregularity} {Strength} {Associated} with {Zero} {Divisor} {Graph} of {Commutative} {Ring}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {711 },
     publisher = {mathdoc},
     volume = {46},
     number = {5},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2022_46_5_a3/}
}
TY  - JOUR
AU  - Ali Ahmad
TI  - Computing the Total Vertex Irregularity Strength Associated with Zero Divisor Graph of Commutative Ring
JO  - Kragujevac Journal of Mathematics
PY  - 2022
SP  - 711 
VL  - 46
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2022_46_5_a3/
LA  - en
ID  - KJM_2022_46_5_a3
ER  - 
%0 Journal Article
%A Ali Ahmad
%T Computing the Total Vertex Irregularity Strength Associated with Zero Divisor Graph of Commutative Ring
%J Kragujevac Journal of Mathematics
%D 2022
%P 711 
%V 46
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2022_46_5_a3/
%G en
%F KJM_2022_46_5_a3
Ali Ahmad. Computing the Total Vertex Irregularity Strength Associated with Zero Divisor Graph of Commutative Ring. Kragujevac Journal of Mathematics, Tome 46 (2022) no. 5, p. 711 . http://geodesic.mathdoc.fr/item/KJM_2022_46_5_a3/