Computing the Total Vertex Irregularity Strength Associated with Zero Divisor Graph of Commutative Ring
Kragujevac Journal of Mathematics, Tome 46 (2022) no. 5, p. 711

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $R$ be a commutative ring and $Z(R)$ be the set of all zero divisors of $R$. $\Gamma(R)$ is said to be a zero divisor graph if $x,y\in V(\Gamma(R))=Z(R)$ and $(x,y)\in E(\Gamma(R))$ if and only if $x.y=0.$ In this paper, we determine the total vertex irregularity strength of zero divisor graphs associated with the commutative rings $\mathbb{Z}_{p^2} ×Z_{q}$ for $p,q$ prime numbers.
Classification : 05C78 05C25, 05C12
Keywords: Total vertex irregularity strength, zero divisor graph, commutative ring
@article{KJM_2022_46_5_a3,
     author = {Ali Ahmad},
     title = {Computing the {Total} {Vertex} {Irregularity} {Strength} {Associated} with {Zero} {Divisor} {Graph} of {Commutative} {Ring}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {711 },
     publisher = {mathdoc},
     volume = {46},
     number = {5},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2022_46_5_a3/}
}
TY  - JOUR
AU  - Ali Ahmad
TI  - Computing the Total Vertex Irregularity Strength Associated with Zero Divisor Graph of Commutative Ring
JO  - Kragujevac Journal of Mathematics
PY  - 2022
SP  - 711 
VL  - 46
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2022_46_5_a3/
LA  - en
ID  - KJM_2022_46_5_a3
ER  - 
%0 Journal Article
%A Ali Ahmad
%T Computing the Total Vertex Irregularity Strength Associated with Zero Divisor Graph of Commutative Ring
%J Kragujevac Journal of Mathematics
%D 2022
%P 711 
%V 46
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2022_46_5_a3/
%G en
%F KJM_2022_46_5_a3
Ali Ahmad. Computing the Total Vertex Irregularity Strength Associated with Zero Divisor Graph of Commutative Ring. Kragujevac Journal of Mathematics, Tome 46 (2022) no. 5, p. 711 . http://geodesic.mathdoc.fr/item/KJM_2022_46_5_a3/