Computing the Total Vertex Irregularity Strength Associated with Zero Divisor Graph of Commutative Ring
Kragujevac Journal of Mathematics, Tome 46 (2022) no. 5, p. 711
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $R$ be a commutative ring and $Z(R)$ be the set of all zero divisors of $R$. $\Gamma(R)$ is said to be a zero divisor graph if $x,y\in V(\Gamma(R))=Z(R)$ and $(x,y)\in E(\Gamma(R))$ if and only if $x.y=0.$ In this paper, we determine the total vertex irregularity strength of zero divisor graphs associated with the commutative rings $\mathbb{Z}_{p^2} ×Z_{q}$ for $p,q$ prime numbers.
Classification :
05C78 05C25, 05C12
Keywords: Total vertex irregularity strength, zero divisor graph, commutative ring
Keywords: Total vertex irregularity strength, zero divisor graph, commutative ring
@article{KJM_2022_46_5_a3,
author = {Ali Ahmad},
title = {Computing the {Total} {Vertex} {Irregularity} {Strength} {Associated} with {Zero} {Divisor} {Graph} of {Commutative} {Ring}},
journal = {Kragujevac Journal of Mathematics},
pages = {711 },
year = {2022},
volume = {46},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2022_46_5_a3/}
}
Ali Ahmad. Computing the Total Vertex Irregularity Strength Associated with Zero Divisor Graph of Commutative Ring. Kragujevac Journal of Mathematics, Tome 46 (2022) no. 5, p. 711 . http://geodesic.mathdoc.fr/item/KJM_2022_46_5_a3/