Lower Bounds for Energy of Matrices and Energy of Regular Graphs
Kragujevac Journal of Mathematics, Tome 46 (2022) no. 5, p. 701 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $A=[a_{ij}]$ be an $n×n$ real symmetric matrix with eigenvalues $\lambda_1,\ldots,\lambda_n$. The energy of $A$, denoted by $\E(A)$, is defined as $|\lambda_1|+\cdots+|\lambda_n|$. We prove that if $A$ is non-zero and $|\lambda_1|\geq\cdots\geq|\lambda_n|$, then \begin{align}abel{corona} \E(A)\geq\frac{n|ambda_1||ambda_n|+um_{1eq i,jeq n}a^2_{ij}}{|ambda_1|+|ambda_n|}. \end{align} In particular, we show that $\Psi(A)\E(A)\geq\sum_{1\leq i,j\leq n}a^2_{ij},$ where $\Psi(A)$ is the maximum value of the sequence $\sum_{j=1}^{n}|a_{1j}|,\sum_{j=1}^{n}|a_{2j}|,\ldots,\sum_{j=1}^{n}|a_{nj}|$. The energy of a simple graph $G$, denoted by $\E(G)$, is defined as the energy of its adjacency matrix. As an application of inequality~(\ref{corona}) we show that if $G$ is a $t$-\,regular graph ($t\neq0$) of order $n$ with no eigenvalue in the interval $(-1,1)$, then $\E(G)\geq\frac{2tn}{t+1}$ and the equality holds if and only if every connected component of $G$ is the complete graph $K_{t+1}$ or the crown graph $K^{\star}_{t+1}$.
Classification : 05C31 05C50, 15A18
Keywords: Energy of matrices, energy of graphs, energy of regular graphs
@article{KJM_2022_46_5_a2,
     author = {Mohammad Reza Oboudi},
     title = {Lower {Bounds} for {Energy} of {Matrices} and {Energy} of {Regular} {Graphs}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {701 },
     publisher = {mathdoc},
     volume = {46},
     number = {5},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2022_46_5_a2/}
}
TY  - JOUR
AU  - Mohammad Reza Oboudi
TI  - Lower Bounds for Energy of Matrices and Energy of Regular Graphs
JO  - Kragujevac Journal of Mathematics
PY  - 2022
SP  - 701 
VL  - 46
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2022_46_5_a2/
LA  - en
ID  - KJM_2022_46_5_a2
ER  - 
%0 Journal Article
%A Mohammad Reza Oboudi
%T Lower Bounds for Energy of Matrices and Energy of Regular Graphs
%J Kragujevac Journal of Mathematics
%D 2022
%P 701 
%V 46
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2022_46_5_a2/
%G en
%F KJM_2022_46_5_a2
Mohammad Reza Oboudi. Lower Bounds for Energy of Matrices and Energy of Regular Graphs. Kragujevac Journal of Mathematics, Tome 46 (2022) no. 5, p. 701 . http://geodesic.mathdoc.fr/item/KJM_2022_46_5_a2/