Lower Bounds for Energy of Matrices and Energy of Regular Graphs
Kragujevac Journal of Mathematics, Tome 46 (2022) no. 5, p. 701
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $A=[a_{ij}]$ be an $n×n$ real symmetric matrix with eigenvalues $\lambda_1,\ldots,\lambda_n$. The energy of $A$, denoted by $\E(A)$, is defined as $|\lambda_1|+\cdots+|\lambda_n|$. We prove that if $A$ is non-zero and $|\lambda_1|\geq\cdots\geq|\lambda_n|$, then \begin{align}abel{corona} \E(A)\geq\frac{n|ambda_1||ambda_n|+um_{1eq i,jeq n}a^2_{ij}}{|ambda_1|+|ambda_n|}. \end{align} In particular, we show that $\Psi(A)\E(A)\geq\sum_{1\leq i,j\leq n}a^2_{ij},$ where $\Psi(A)$ is the maximum value of the sequence $\sum_{j=1}^{n}|a_{1j}|,\sum_{j=1}^{n}|a_{2j}|,\ldots,\sum_{j=1}^{n}|a_{nj}|$. The energy of a simple graph $G$, denoted by $\E(G)$, is defined as the energy of its adjacency matrix. As an application of inequality~(\ref{corona}) we show that if $G$ is a $t$-\,regular graph ($t\neq0$) of order $n$ with no eigenvalue in the interval $(-1,1)$, then $\E(G)\geq\frac{2tn}{t+1}$ and the equality holds if and only if every connected component of $G$ is the complete graph $K_{t+1}$ or the crown graph $K^{\star}_{t+1}$.
Classification :
05C31 05C50, 15A18
Keywords: Energy of matrices, energy of graphs, energy of regular graphs
Keywords: Energy of matrices, energy of graphs, energy of regular graphs
@article{KJM_2022_46_5_a2,
author = {Mohammad Reza Oboudi},
title = {Lower {Bounds} for {Energy} of {Matrices} and {Energy} of {Regular} {Graphs}},
journal = {Kragujevac Journal of Mathematics},
pages = {701 },
publisher = {mathdoc},
volume = {46},
number = {5},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2022_46_5_a2/}
}
Mohammad Reza Oboudi. Lower Bounds for Energy of Matrices and Energy of Regular Graphs. Kragujevac Journal of Mathematics, Tome 46 (2022) no. 5, p. 701 . http://geodesic.mathdoc.fr/item/KJM_2022_46_5_a2/