A Note on the Definition of Bounded Variation of Higher Order for Double Sequences
Kragujevac Journal of Mathematics, Tome 44 (2020) no. 4, p. 563
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this study the definition of bounded variation of order $p$ ($p\in \mathbb N$) for double sequences is considered. Some inclusion relations are proved and counter examples are provided for ensuring proper inclusions.
Classification :
40B05
Keywords: double sequence of bounded variation, double sequence of bounded variation of order $p$ ($p\in \mathbb N$), double sequence of bounded variation of order $(p;0)$, double sequence of bounded variation of order $(0;p)$, double sequence of bounded variation of order $(p;p)$
Keywords: double sequence of bounded variation, double sequence of bounded variation of order $p$ ($p\in \mathbb N$), double sequence of bounded variation of order $(p;0)$, double sequence of bounded variation of order $(0;p)$, double sequence of bounded variation of order $(p;p)$
@article{KJM_2020_44_4_a6,
author = {Bhikha Lila Ghodadra and V. F\"ul\"op},
title = {A {Note} on the {Definition} of {Bounded} {Variation} of {Higher} {Order} for {Double} {Sequences}},
journal = {Kragujevac Journal of Mathematics},
pages = {563 },
publisher = {mathdoc},
volume = {44},
number = {4},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2020_44_4_a6/}
}
TY - JOUR AU - Bhikha Lila Ghodadra AU - V. Fülöp TI - A Note on the Definition of Bounded Variation of Higher Order for Double Sequences JO - Kragujevac Journal of Mathematics PY - 2020 SP - 563 VL - 44 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/KJM_2020_44_4_a6/ LA - en ID - KJM_2020_44_4_a6 ER -
Bhikha Lila Ghodadra; V. Fülöp. A Note on the Definition of Bounded Variation of Higher Order for Double Sequences. Kragujevac Journal of Mathematics, Tome 44 (2020) no. 4, p. 563 . http://geodesic.mathdoc.fr/item/KJM_2020_44_4_a6/