A Generalized Class of Close-to-Convex Functions
Kragujevac Journal of Mathematics, Tome 44 (2020) no. 4, p. 533 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $\mathcal{H}^{\phi}_{\alpha}(\beta)$ denote the class of functions $f,$ analytic in the open unit disk $\mathbb E$ which satisfy the condition$\Reeft((1-lpha)\frac{zf'(z)}{hi(z)}+lphaeft(1+\frac{zf''(z)}{f'(z)}\right)\right)>\beta,\quad z ı\mathbb{E}, $ where $\alpha,~\beta$ are pre-assigned real numbers and $\phi(z)$ is a starlike function. The special cases of the class $\mathcal{H}^{\phi}_{\alpha}(\beta)$ have been studied in literature by different authors. In 2007, Singh et al. \cite{singhs2007} studied the class $\mathcal{H}^{z}_{\alpha}(\beta)$ and they established that functions in $\mathcal{H}_{\alpha}^{z}(\beta)$ are univalent for all real numbers $\alpha, ~\beta$ satisfying the condition $\alpha\leq\beta1$ and the result is sharp in the sense that constant $\beta$ cannot be replaced by a real number smaller than $\alpha.$ Singh et al. \cite{singhv2005} in 2005, proved that for $0\alpha1$ functions in class $\mathcal{H}_{\alpha}^{z}(\alpha)$ are univalent. In 1975, Al-Amiri and Reade \cite{alamiri} showed that functions in class $\mathcal{H}_{\alpha}^{z}(0)$ are univalent for all $\alpha\leq 0$ and also for $\alpha=1$ in $\mathbb{E}.$ In the present paper, we prove that members of the class $\mathcal{H}^{\phi}_{\alpha}(\beta)$ are close-to-convex and hence univalent for real numbers $\alpha,~ \beta$ and for a starlike function $\phi$ satisfying the condition $\beta+\alpha-1\alpha \Re\left(\frac{z\phi'(z)}{\phi(z)}\right)\leq\beta1$.
Classification : 30C80 30C45
Keywords: analytic function, univalent function, close-to-convex function
@article{KJM_2020_44_4_a3,
     author = {Pardeep Kaur and Sukhwinder Singh Billing},
     title = {A {Generalized} {Class} of {Close-to-Convex} {Functions}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {533 },
     publisher = {mathdoc},
     volume = {44},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2020_44_4_a3/}
}
TY  - JOUR
AU  - Pardeep Kaur
AU  - Sukhwinder Singh Billing
TI  - A Generalized Class of Close-to-Convex Functions
JO  - Kragujevac Journal of Mathematics
PY  - 2020
SP  - 533 
VL  - 44
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2020_44_4_a3/
LA  - en
ID  - KJM_2020_44_4_a3
ER  - 
%0 Journal Article
%A Pardeep Kaur
%A Sukhwinder Singh Billing
%T A Generalized Class of Close-to-Convex Functions
%J Kragujevac Journal of Mathematics
%D 2020
%P 533 
%V 44
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2020_44_4_a3/
%G en
%F KJM_2020_44_4_a3
Pardeep Kaur; Sukhwinder Singh Billing. A Generalized Class of Close-to-Convex Functions. Kragujevac Journal of Mathematics, Tome 44 (2020) no. 4, p. 533 . http://geodesic.mathdoc.fr/item/KJM_2020_44_4_a3/