Inner Higher Derivations on Algebras
Kragujevac Journal of Mathematics, Tome 43 (2019) no. 2, p. 267
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $\mathcal{A}$ be an algebra. A sequence $\mathbf{d}=\{d_n\}_{n=0}^\infty$ of linear operators on $\mathcal{A}$ is called a extit{higher derivation} if $d_0$ is the identity mapping on $\mathcal{A}$ and $d_n(xy)=\sum_{k=0}^nd_k(x)d_{n-k}(y)$, for each $n=0,1,2,\ldots$ and $x,y\in\mathcal{A}$. We say that a higher derivation $\mathbf{d}$ is extit{inner} if there is a sequence $\mathbf{a}=\{a_n\}_{n=1}^\infty$ in $\mathcal{A}$ such that inebreak $(n+1)d_{n+1}(x)=\sum_{k=0}^n a_{k+1}d_{n-k}(x)-d_{n-k}(x)a_{k+1}$, for each $n=0,1,2,\ldots$ and $x\in\mathcal{A}$. Giving a characterization for inner higher derivations on a torsion free algebra $\mathcal{A}$, we show that each higher derivation on $\mathcal{A}$ is inner provided that each derivation on $\mathcal{A}$ is inner.
Classification :
16W25, 47L57, 47B47, 13N15
Keywords: derivation, inner derivation, higher derivation, inner higher derivation
Keywords: derivation, inner derivation, higher derivation, inner higher derivation
@article{KJM_2019_43_2_a6,
author = {E. Tafazoli and M. Mirzavaziri},
title = {Inner {Higher} {Derivations} on {Algebras}},
journal = {Kragujevac Journal of Mathematics},
pages = {267 },
publisher = {mathdoc},
volume = {43},
number = {2},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2019_43_2_a6/}
}
E. Tafazoli; M. Mirzavaziri. Inner Higher Derivations on Algebras. Kragujevac Journal of Mathematics, Tome 43 (2019) no. 2, p. 267 . http://geodesic.mathdoc.fr/item/KJM_2019_43_2_a6/