Inner Higher Derivations on Algebras
Kragujevac Journal of Mathematics, Tome 43 (2019) no. 2, p. 267 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $\mathcal{A}$ be an algebra. A sequence $\mathbf{d}=\{d_n\}_{n=0}^\infty$ of linear operators on $\mathcal{A}$ is called a extit{higher derivation} if $d_0$ is the identity mapping on $\mathcal{A}$ and $d_n(xy)=\sum_{k=0}^nd_k(x)d_{n-k}(y)$, for each $n=0,1,2,\ldots$ and $x,y\in\mathcal{A}$. We say that a higher derivation $\mathbf{d}$ is extit{inner} if there is a sequence $\mathbf{a}=\{a_n\}_{n=1}^\infty$ in $\mathcal{A}$ such that inebreak $(n+1)d_{n+1}(x)=\sum_{k=0}^n a_{k+1}d_{n-k}(x)-d_{n-k}(x)a_{k+1}$, for each $n=0,1,2,\ldots$ and $x\in\mathcal{A}$. Giving a characterization for inner higher derivations on a torsion free algebra $\mathcal{A}$, we show that each higher derivation on $\mathcal{A}$ is inner provided that each derivation on $\mathcal{A}$ is inner.
Classification : 16W25, 47L57, 47B47, 13N15
Keywords: derivation, inner derivation, higher derivation, inner higher derivation
@article{KJM_2019_43_2_a6,
     author = {E. Tafazoli and M. Mirzavaziri},
     title = {Inner {Higher} {Derivations} on {Algebras}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {267 },
     publisher = {mathdoc},
     volume = {43},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2019_43_2_a6/}
}
TY  - JOUR
AU  - E. Tafazoli
AU  - M. Mirzavaziri
TI  - Inner Higher Derivations on Algebras
JO  - Kragujevac Journal of Mathematics
PY  - 2019
SP  - 267 
VL  - 43
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2019_43_2_a6/
LA  - en
ID  - KJM_2019_43_2_a6
ER  - 
%0 Journal Article
%A E. Tafazoli
%A M. Mirzavaziri
%T Inner Higher Derivations on Algebras
%J Kragujevac Journal of Mathematics
%D 2019
%P 267 
%V 43
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2019_43_2_a6/
%G en
%F KJM_2019_43_2_a6
E. Tafazoli; M. Mirzavaziri. Inner Higher Derivations on Algebras. Kragujevac Journal of Mathematics, Tome 43 (2019) no. 2, p. 267 . http://geodesic.mathdoc.fr/item/KJM_2019_43_2_a6/