When is a Bi-Jordan Homomorphism Bi-homomorphism?
Kragujevac Journal of Mathematics, Tome 42 (2018) no. 4, p. 485

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

For Banach algebras $\mathcal{A}$ and $\mathcal{B}$, we show that if $\mathcal{U}=\mathcal{A}×\mathcal{B}$ is commutative (weakly commutative), then each bi-Jordan homomorphism from $\mathcal{U}$ into a semisimple commutative Banach algebra $\mathcal{D}$ is a bi-homomorphism. We also prove the same result for 3-bi-Jordan homomorphism with the additional hypothesis that the Banach algebra $\mathcal{U}$ is unital.
Classification : 47B48 46L05, 46H25
Keywords: n-bi-homomorphism, n-bi-Jordan homomorphism, weakly commutative
@article{KJM_2018_42_4_a0,
     author = {A. Zivari-Kazempour},
     title = {When is a {Bi-Jordan} {Homomorphism} {Bi-homomorphism?}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {485 },
     publisher = {mathdoc},
     volume = {42},
     number = {4},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2018_42_4_a0/}
}
TY  - JOUR
AU  - A. Zivari-Kazempour
TI  - When is a Bi-Jordan Homomorphism Bi-homomorphism?
JO  - Kragujevac Journal of Mathematics
PY  - 2018
SP  - 485 
VL  - 42
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2018_42_4_a0/
LA  - en
ID  - KJM_2018_42_4_a0
ER  - 
%0 Journal Article
%A A. Zivari-Kazempour
%T When is a Bi-Jordan Homomorphism Bi-homomorphism?
%J Kragujevac Journal of Mathematics
%D 2018
%P 485 
%V 42
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2018_42_4_a0/
%G en
%F KJM_2018_42_4_a0
A. Zivari-Kazempour. When is a Bi-Jordan Homomorphism Bi-homomorphism?. Kragujevac Journal of Mathematics, Tome 42 (2018) no. 4, p. 485 . http://geodesic.mathdoc.fr/item/KJM_2018_42_4_a0/