When is a Bi-Jordan Homomorphism Bi-homomorphism?
Kragujevac Journal of Mathematics, Tome 42 (2018) no. 4, p. 485
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
For Banach algebras $\mathcal{A}$ and $\mathcal{B}$, we show that if $\mathcal{U}=\mathcal{A}×\mathcal{B}$ is commutative (weakly commutative), then each bi-Jordan homomorphism from $\mathcal{U}$ into a semisimple commutative Banach algebra $\mathcal{D}$ is a bi-homomorphism. We also prove the same result for 3-bi-Jordan homomorphism with the additional hypothesis that the Banach algebra $\mathcal{U}$ is unital.
Classification :
47B48 46L05, 46H25
Keywords: n-bi-homomorphism, n-bi-Jordan homomorphism, weakly commutative
Keywords: n-bi-homomorphism, n-bi-Jordan homomorphism, weakly commutative
@article{KJM_2018_42_4_a0,
author = {A. Zivari-Kazempour},
title = {When is a {Bi-Jordan} {Homomorphism} {Bi-homomorphism?}},
journal = {Kragujevac Journal of Mathematics},
pages = {485 },
publisher = {mathdoc},
volume = {42},
number = {4},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2018_42_4_a0/}
}
A. Zivari-Kazempour. When is a Bi-Jordan Homomorphism Bi-homomorphism?. Kragujevac Journal of Mathematics, Tome 42 (2018) no. 4, p. 485 . http://geodesic.mathdoc.fr/item/KJM_2018_42_4_a0/