Vector Valued Hyperstructures
Kragujevac Journal of Mathematics, Tome 42 (2018) no. 2, p. 259 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Vector valued hyperstructures, i.e., $(n,m)$-hyperstructures, where $n=m+k$, $k\geq 1$, as a generalization of vector valued structures and $n$-ary hyperstructures are introduced and supported by many examples. We have presented some initial properties about $(n,m)$-hypersemigroups and $(n,m)$-hypergroups. Moreover, by properly defining regular and strongly regular binary relations, from vector valued hypersemigroups (hypergroups) we obtain "ordinary" vector valued semigroups (groups) on quotients.
Classification : 20M10 20N99, 20N20
Keywords: $(n;m)$-hyperoperation, $(n;m)$-hypergroupoid, $(n;m)$-hypersemi\-group, $(n;m)$-hyperquasigroup, $(n;m)$-hypergroup, regular relation, strongly regular relation
@article{KJM_2018_42_2_a8,
     author = {V. Miovska and V. Celakoska-Jordanova and B. Davvaz},
     title = {Vector {Valued} {Hyperstructures}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {259 },
     publisher = {mathdoc},
     volume = {42},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2018_42_2_a8/}
}
TY  - JOUR
AU  - V. Miovska
AU  - V. Celakoska-Jordanova
AU  - B. Davvaz
TI  - Vector Valued Hyperstructures
JO  - Kragujevac Journal of Mathematics
PY  - 2018
SP  - 259 
VL  - 42
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2018_42_2_a8/
LA  - en
ID  - KJM_2018_42_2_a8
ER  - 
%0 Journal Article
%A V. Miovska
%A V. Celakoska-Jordanova
%A B. Davvaz
%T Vector Valued Hyperstructures
%J Kragujevac Journal of Mathematics
%D 2018
%P 259 
%V 42
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2018_42_2_a8/
%G en
%F KJM_2018_42_2_a8
V. Miovska; V. Celakoska-Jordanova; B. Davvaz. Vector Valued Hyperstructures. Kragujevac Journal of Mathematics, Tome 42 (2018) no. 2, p. 259 . http://geodesic.mathdoc.fr/item/KJM_2018_42_2_a8/