A Notion of $\alpha\beta$-statistical Convergence of Order $\gamma$ in Probability
Kragujevac Journal of Mathematics, Tome 42 (2018) no. 1, p. 51

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

A sequence of real numbers $\{x_{n}\}_{n\in \mathbb{N}}$ is said to be $\alpha\beta$-statistically convergent of order $\gamma$ (where $0\gamma\leq 1$) to a real number $x$ \cite{a} if for every $\delta>0$, $\underset{n\rightarrow ıfty}{im}\frac{1}{(\beta_{n}-lpha_{n}+1)^\gamma} eft|\{k ı [lpha_n,\beta_n] : |x_{k}-x|\geq ẹlta \}\right|=0,$ where $\{\alpha_{n}\}_{n\in \mathbb{N}}$ and $\{\beta_{n}\}_{n\in \mathbb{N}}$ are two sequences of positive real numbers such that $\{\alpha_{n}\}_{n\in \mathbb{N}}$ and $\{\beta_{n}\}_{n\in \mathbb{N}}$ are both non-decreasing, $\beta_{n}\geq \alpha_{n}$ for all $n\in \mathbb{N}$, ($\beta_{n}-\alpha_{n})\rightarrow \infty$ as $n\rightarrow \infty$. In this paper we study a related concept of convergences in which the value $x_{k}$ is replaced by $P(|X_{k}-X|\geq \varepsilon)$ and $E(|X_{k}-X|^{r})$ respectively (where $X, X_k$ are random variables for each $k\in \mathbb{N}$, $\varepsilon>0$, $P$ denotes the probability, and $E$ denotes the expectation) and we call them $\alpha \beta$-statistical convergence of order $\gamma$ in probability and $\alpha\beta$-statistical convergence of order $\gamma$ in $r^{\text{th}}$ expectation respectively. The results are applied to build the probability distribution for $\alpha\beta$-strong $p$-Ces+�ro summability of order $\gamma$ in probability and $\alpha\beta$-statistical convergence of order $\gamma$ in distribution. So our main objective is to interpret a relational behaviour of above mentioned four convergences. We give a condition under which a sequence of random variables will converge to a unique limit under two different $(\alpha,\beta)$ sequences and this is also use to prove that if this condition violates then the limit value of $\alpha \beta$-statistical convergence of order $\gamma$ in probability of a sequence of random variables for two different $(\alpha,\beta)$ sequences may not be equal.
Classification : 40A35 40G15, 60B10
Keywords: $\alpha\beta$-statistical convergence, $\alpha \beta$-statistical convergence of order $\gamma$ in probability, $\alpha\beta$-strong $p$-Cesàro summability of order $\gamma$ in probability, $\alpha\beta$-statistical convergence of order $\gamma$ in $r^\textth$ expectation, $\alpha\beta$-statistical convergence of order $\gamma$ in distribution
@article{KJM_2018_42_1_a4,
     author = {Pratulananda Das and Sumit Som and Sanjoy Ghosal and Vatan Karakaya},
     title = {A {Notion} of $\alpha\beta$-statistical {Convergence} of {Order} $\gamma$ in {Probability}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {51 },
     publisher = {mathdoc},
     volume = {42},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2018_42_1_a4/}
}
TY  - JOUR
AU  - Pratulananda Das
AU  - Sumit Som
AU  - Sanjoy Ghosal
AU  - Vatan Karakaya
TI  - A Notion of $\alpha\beta$-statistical Convergence of Order $\gamma$ in Probability
JO  - Kragujevac Journal of Mathematics
PY  - 2018
SP  - 51 
VL  - 42
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2018_42_1_a4/
LA  - en
ID  - KJM_2018_42_1_a4
ER  - 
%0 Journal Article
%A Pratulananda Das
%A Sumit Som
%A Sanjoy Ghosal
%A Vatan Karakaya
%T A Notion of $\alpha\beta$-statistical Convergence of Order $\gamma$ in Probability
%J Kragujevac Journal of Mathematics
%D 2018
%P 51 
%V 42
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2018_42_1_a4/
%G en
%F KJM_2018_42_1_a4
Pratulananda Das; Sumit Som; Sanjoy Ghosal; Vatan Karakaya. A Notion of $\alpha\beta$-statistical Convergence of Order $\gamma$ in Probability. Kragujevac Journal of Mathematics, Tome 42 (2018) no. 1, p. 51 . http://geodesic.mathdoc.fr/item/KJM_2018_42_1_a4/