Clusters and Various Versions of Wiener-Type Invariants
Kragujevac Journal of Mathematics, Tome 39 (2015) no. 2, p. 155

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The Wiener type invariant $W^{\left(\lambda \right)} (G)$ of a simple connected graph $G$ is defined as the sum of the terms $d(u,v\left|G\right. )^{\lambda }$ over all unordered pairs $\{u,v\}$ of vertices of $G$, where $d(u,v|G)$ denotes the distance between the vertices $u$ and $v$ in $G$ and $\lambda $ is an arbitrary real number. The cluster $G_{1} \{ G_{2} \} $ of a graph $G_{1} $ and a rooted graph $G_{2} $ is the graph obtained by taking one copy of $G_{1} $ and $\left|V(G_{1} )\right|$ copies of $G_{2} $, and by identifying the root vertex of the $i$-th copy of $G_{2} $ with the $i$-th vertex of $G_{1} $, for $i=1,2,…,\left|V(G_{1} )\right|$. In this paper, we study the behavior of three versions of Wiener type invariant under the cluster product. Results are applied to compute several distance-based topological invariants of bristled and bridge graphs by specializing components in clusters.
Classification : 05C76 05C12, 92E10
Keywords: Distance, topological index, graph product
@article{KJM_2015_39_2_a4,
     author = {Mahdieh Azari and Ali Iranmanesh},
     title = {Clusters and {Various} {Versions} of {Wiener-Type} {Invariants}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {155 },
     publisher = {mathdoc},
     volume = {39},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2015_39_2_a4/}
}
TY  - JOUR
AU  - Mahdieh Azari
AU  - Ali Iranmanesh
TI  - Clusters and Various Versions of Wiener-Type Invariants
JO  - Kragujevac Journal of Mathematics
PY  - 2015
SP  - 155 
VL  - 39
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2015_39_2_a4/
LA  - en
ID  - KJM_2015_39_2_a4
ER  - 
%0 Journal Article
%A Mahdieh Azari
%A Ali Iranmanesh
%T Clusters and Various Versions of Wiener-Type Invariants
%J Kragujevac Journal of Mathematics
%D 2015
%P 155 
%V 39
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2015_39_2_a4/
%G en
%F KJM_2015_39_2_a4
Mahdieh Azari; Ali Iranmanesh. Clusters and Various Versions of Wiener-Type Invariants. Kragujevac Journal of Mathematics, Tome 39 (2015) no. 2, p. 155 . http://geodesic.mathdoc.fr/item/KJM_2015_39_2_a4/