Clusters and Various Versions of Wiener-Type Invariants
Kragujevac Journal of Mathematics, Tome 39 (2015) no. 2, p. 155 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The Wiener type invariant $W^{\left(\lambda \right)} (G)$ of a simple connected graph $G$ is defined as the sum of the terms $d(u,v\left|G\right. )^{\lambda }$ over all unordered pairs $\{u,v\}$ of vertices of $G$, where $d(u,v|G)$ denotes the distance between the vertices $u$ and $v$ in $G$ and $\lambda $ is an arbitrary real number. The cluster $G_{1} \{ G_{2} \} $ of a graph $G_{1} $ and a rooted graph $G_{2} $ is the graph obtained by taking one copy of $G_{1} $ and $\left|V(G_{1} )\right|$ copies of $G_{2} $, and by identifying the root vertex of the $i$-th copy of $G_{2} $ with the $i$-th vertex of $G_{1} $, for $i=1,2,…,\left|V(G_{1} )\right|$. In this paper, we study the behavior of three versions of Wiener type invariant under the cluster product. Results are applied to compute several distance-based topological invariants of bristled and bridge graphs by specializing components in clusters.
Classification : 05C76 05C12, 92E10
Keywords: Distance, topological index, graph product
@article{KJM_2015_39_2_a4,
     author = {Mahdieh Azari and Ali Iranmanesh},
     title = {Clusters and {Various} {Versions} of {Wiener-Type} {Invariants}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {155 },
     publisher = {mathdoc},
     volume = {39},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2015_39_2_a4/}
}
TY  - JOUR
AU  - Mahdieh Azari
AU  - Ali Iranmanesh
TI  - Clusters and Various Versions of Wiener-Type Invariants
JO  - Kragujevac Journal of Mathematics
PY  - 2015
SP  - 155 
VL  - 39
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2015_39_2_a4/
LA  - en
ID  - KJM_2015_39_2_a4
ER  - 
%0 Journal Article
%A Mahdieh Azari
%A Ali Iranmanesh
%T Clusters and Various Versions of Wiener-Type Invariants
%J Kragujevac Journal of Mathematics
%D 2015
%P 155 
%V 39
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2015_39_2_a4/
%G en
%F KJM_2015_39_2_a4
Mahdieh Azari; Ali Iranmanesh. Clusters and Various Versions of Wiener-Type Invariants. Kragujevac Journal of Mathematics, Tome 39 (2015) no. 2, p. 155 . http://geodesic.mathdoc.fr/item/KJM_2015_39_2_a4/