An upper bound on the double domination number of trees
Kragujevac Journal of Mathematics, Tome 39 (2015) no. 2, p. 133 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In a graph $G$, a vertex dominates itself and its neighbors. A set $S$ of vertices in a graph $G$ is a {\em double dominating set} if $S$ dominates every vertex of $G$ at least twice. The {\em double domination number} $\gamma_{\times2}(G)$ is the minimum cardinality of a double dominating set in $G$. The {\em annihilation number} $a(G)$ is the largest integer $k$ such that the sum of the first $k$ terms of the non-decreasing degree sequence of $G$ is at most the number of edges in $G$. In this paper, we show that for any tree $T$ of order $n\ge 2$, different from $P_4$, $\gamma_{\times2}(T)\le \frac{3a(T)+1}{2}$.
Classification : 05C69
Keywords: domination number, double dominating set, double domination number, annihilation number, tree
@article{KJM_2015_39_2_a1,
     author = {J. Amjadi},
     title = {An upper bound on the double domination number of trees},
     journal = {Kragujevac Journal of Mathematics},
     pages = {133 },
     publisher = {mathdoc},
     volume = {39},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2015_39_2_a1/}
}
TY  - JOUR
AU  - J. Amjadi
TI  - An upper bound on the double domination number of trees
JO  - Kragujevac Journal of Mathematics
PY  - 2015
SP  - 133 
VL  - 39
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2015_39_2_a1/
LA  - en
ID  - KJM_2015_39_2_a1
ER  - 
%0 Journal Article
%A J. Amjadi
%T An upper bound on the double domination number of trees
%J Kragujevac Journal of Mathematics
%D 2015
%P 133 
%V 39
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2015_39_2_a1/
%G en
%F KJM_2015_39_2_a1
J. Amjadi. An upper bound on the double domination number of trees. Kragujevac Journal of Mathematics, Tome 39 (2015) no. 2, p. 133 . http://geodesic.mathdoc.fr/item/KJM_2015_39_2_a1/