Integral Equations Method and the Transmission Problem for the Stokes System
Kragujevac Journal of Mathematics, Tome 39 (2015) no. 1, p. 53
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
The transmission problem for the Stokes system is studied: $\Delta{\mathbf v}_\pm=\nabla p_\pm$, $\nabla\cdot{\mathbf v}_\pm=0$ in $G_\pm$, ${\mathbf v}_+-{\mathbf v}_-={\mathbf g}$, $a_+T({\mathbf v}_+,p_+)\mathbf n-a_-T({\mathbf v}_-,p_-)\mathbf n=\mathbf f$ on $\partial G_+$. Here $G_+\subset R^3$ is a bounded open set with Lipschitz boundary and $G_-$ is the corresponding complementary open set. Using the integral equation method we study the problem in homogeneous Sobolev spaces. Under assumption that $\partial G_+$ is of class ${\cal C}^1$ we study this problem also in Besov spaces and $L^q$-solutions of the problem. We show the unique solvability of the problem. Moreover, we solve the corresponding boundary integral equations by the successive approximation method.
Classification :
35Q35 65N38
Keywords: transmission problem, Stokes system, integral equation method
Keywords: transmission problem, Stokes system, integral equation method
@article{KJM_2015_39_1_a5,
author = {D. Medkov\'a},
title = {Integral {Equations} {Method} and the {Transmission} {Problem} for the {Stokes} {System}},
journal = {Kragujevac Journal of Mathematics},
pages = {53 },
year = {2015},
volume = {39},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2015_39_1_a5/}
}
D. Medková. Integral Equations Method and the Transmission Problem for the Stokes System. Kragujevac Journal of Mathematics, Tome 39 (2015) no. 1, p. 53 . http://geodesic.mathdoc.fr/item/KJM_2015_39_1_a5/