Characteristic Polynomial of Some Cluster Graphs
Kragujevac Journal of Mathematics, Tome 37 (2013) no. 2, p. 369 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The characteristic polynomial of a graph $G$ with $p$ vertices is defined as $\phi(G: \lambda) = \det(\lambda I - A(G))$, where $A$ is the adjacency matrix of $G$ and $I$ is the unit matrix. The roots of the characteristic equation $hi(G: ambda) = 0$, denoted by $ambda_1, ambda_2, ..., ambda_p$ are the eigenvalues of $G$. The graphs with large number of edges are referred as graph representations of inorganic clusters, called as Cluster graphs. In this paper we obtain the characteristic polynomial of class of cluster graphs.
Classification : 05C50
Keywords: Spectra, Complete graph, Cluster graphs
@article{KJM_2013_37_2_a16,
     author = {Prabhakar R. Hampiholi and Basavraj S. Durgi},
     title = {Characteristic {Polynomial} of {Some} {Cluster} {Graphs}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {369 },
     publisher = {mathdoc},
     volume = {37},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2013_37_2_a16/}
}
TY  - JOUR
AU  - Prabhakar R. Hampiholi
AU  - Basavraj S. Durgi
TI  - Characteristic Polynomial of Some Cluster Graphs
JO  - Kragujevac Journal of Mathematics
PY  - 2013
SP  - 369 
VL  - 37
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2013_37_2_a16/
LA  - en
ID  - KJM_2013_37_2_a16
ER  - 
%0 Journal Article
%A Prabhakar R. Hampiholi
%A Basavraj S. Durgi
%T Characteristic Polynomial of Some Cluster Graphs
%J Kragujevac Journal of Mathematics
%D 2013
%P 369 
%V 37
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2013_37_2_a16/
%G en
%F KJM_2013_37_2_a16
Prabhakar R. Hampiholi; Basavraj S. Durgi. Characteristic Polynomial of Some Cluster Graphs. Kragujevac Journal of Mathematics, Tome 37 (2013) no. 2, p. 369 . http://geodesic.mathdoc.fr/item/KJM_2013_37_2_a16/