Upper signed total domination number of directed graphs
Kragujevac Journal of Mathematics, Tome 36 (2012) no. 2, p. 349

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $D=(V,A)$ be a finite simple digraph in which $d^-_D(v)\ge 1$ for all $vı V$. A function $f:Vongrightarrow \{-1,1\}$ is called a signed total dominating function (STDF) if $um_{uı N^-(v)}f(u) \ge 1$ for each vertex $vı V$. A STDF $f$ of a digraph $D$ is minimal if there is no STDF $geq f$ such that $g(v)e f(v)$ for each $vı V$. The maximum value of $um_{vı V}f(v)$, taken over all minimal signed total dominating functions $f$, is called the {\em upper signed total domination number} $ȁmma_{t}^s(D)$. In this paper, we present a sharp upper bound for $ȁmma^s_{t}(D)$.
Classification : 05C69 05C20
Keywords: Signed total dominating function, minimal signed total dominating function, upper signed total domination number, directed graph.
@article{KJM_2012_36_2_a17,
     author = {Seyed Mahmoud Sheikholeslami},
     title = {Upper signed total domination number of directed graphs},
     journal = {Kragujevac Journal of Mathematics},
     pages = {349 },
     publisher = {mathdoc},
     volume = {36},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2012_36_2_a17/}
}
TY  - JOUR
AU  - Seyed Mahmoud Sheikholeslami
TI  - Upper signed total domination number of directed graphs
JO  - Kragujevac Journal of Mathematics
PY  - 2012
SP  - 349 
VL  - 36
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2012_36_2_a17/
LA  - en
ID  - KJM_2012_36_2_a17
ER  - 
%0 Journal Article
%A Seyed Mahmoud Sheikholeslami
%T Upper signed total domination number of directed graphs
%J Kragujevac Journal of Mathematics
%D 2012
%P 349 
%V 36
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2012_36_2_a17/
%G en
%F KJM_2012_36_2_a17
Seyed Mahmoud Sheikholeslami. Upper signed total domination number of directed graphs. Kragujevac Journal of Mathematics, Tome 36 (2012) no. 2, p. 349 . http://geodesic.mathdoc.fr/item/KJM_2012_36_2_a17/