Super mean number of a graph
Kragujevac Journal of Mathematics, Tome 36 (2012) no. 1, p. 93

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $G$ be a graph and let $f:V(G)\rightarrow \{1,2,\dots,n\}$ be a function such that the label of the edge $uv$ is $\frac{f(u)+f(v)}{2}$ or $\frac{f(u)+f(v)+1}{2}$ according as $f(u)+f(v)$ is even or odd and $f(V(G))\cup \{f^*(e):e\in E(G)\}\subseteq \{1,2,\dots,n\}$. If $n$ is the smallest positive integer satisfying these conditions together with the condition that all the vertex and edge labels are distinct and there is no common vertex and edge labels, then $n$ is called the super mean number of a graph $G$ and it is denoted by $S_m(G)$. In this paper, we find the bounds for super mean number of some standard graphs.
Classification : 05C78
Keywords: Labeling, super mean graph, super mean number
@article{KJM_2012_36_1_a10,
     author = {A. Nagarajan and R. Vasuki and S. Arockiaraj},
     title = {Super mean number of a graph},
     journal = {Kragujevac Journal of Mathematics},
     pages = {93 },
     publisher = {mathdoc},
     volume = {36},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2012_36_1_a10/}
}
TY  - JOUR
AU  - A. Nagarajan
AU  - R. Vasuki
AU  - S. Arockiaraj
TI  - Super mean number of a graph
JO  - Kragujevac Journal of Mathematics
PY  - 2012
SP  - 93 
VL  - 36
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2012_36_1_a10/
LA  - en
ID  - KJM_2012_36_1_a10
ER  - 
%0 Journal Article
%A A. Nagarajan
%A R. Vasuki
%A S. Arockiaraj
%T Super mean number of a graph
%J Kragujevac Journal of Mathematics
%D 2012
%P 93 
%V 36
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2012_36_1_a10/
%G en
%F KJM_2012_36_1_a10
A. Nagarajan; R. Vasuki; S. Arockiaraj. Super mean number of a graph. Kragujevac Journal of Mathematics, Tome 36 (2012) no. 1, p. 93 . http://geodesic.mathdoc.fr/item/KJM_2012_36_1_a10/