Super mean number of a graph
Kragujevac Journal of Mathematics, Tome 36 (2012) no. 1, p. 93 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $G$ be a graph and let $f:V(G)\rightarrow \{1,2,\dots,n\}$ be a function such that the label of the edge $uv$ is $\frac{f(u)+f(v)}{2}$ or $\frac{f(u)+f(v)+1}{2}$ according as $f(u)+f(v)$ is even or odd and $f(V(G))\cup \{f^*(e):e\in E(G)\}\subseteq \{1,2,\dots,n\}$. If $n$ is the smallest positive integer satisfying these conditions together with the condition that all the vertex and edge labels are distinct and there is no common vertex and edge labels, then $n$ is called the super mean number of a graph $G$ and it is denoted by $S_m(G)$. In this paper, we find the bounds for super mean number of some standard graphs.
Classification : 05C78
Keywords: Labeling, super mean graph, super mean number
@article{KJM_2012_36_1_a10,
     author = {A. Nagarajan and R. Vasuki and S. Arockiaraj},
     title = {Super mean number of a graph},
     journal = {Kragujevac Journal of Mathematics},
     pages = {93 },
     publisher = {mathdoc},
     volume = {36},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2012_36_1_a10/}
}
TY  - JOUR
AU  - A. Nagarajan
AU  - R. Vasuki
AU  - S. Arockiaraj
TI  - Super mean number of a graph
JO  - Kragujevac Journal of Mathematics
PY  - 2012
SP  - 93 
VL  - 36
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2012_36_1_a10/
LA  - en
ID  - KJM_2012_36_1_a10
ER  - 
%0 Journal Article
%A A. Nagarajan
%A R. Vasuki
%A S. Arockiaraj
%T Super mean number of a graph
%J Kragujevac Journal of Mathematics
%D 2012
%P 93 
%V 36
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2012_36_1_a10/
%G en
%F KJM_2012_36_1_a10
A. Nagarajan; R. Vasuki; S. Arockiaraj. Super mean number of a graph. Kragujevac Journal of Mathematics, Tome 36 (2012) no. 1, p. 93 . http://geodesic.mathdoc.fr/item/KJM_2012_36_1_a10/