On scalar and total scalar curvatures of Riemann-Cartan manifolds
Kragujevac Journal of Mathematics, Tome 35 (2011) no. 2, p. 291
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
The concept of the Riemann-Cartan manifold was introduced by E.~Cartan. The Riemann-Cartan manifold is a triple $(M,g,\bar\nabla)$, where $(M,g)$ is a Riemann $n$-dimensional $(n\geq2)$ manifold with linear connection $\bar\nabla$ having nonzero torsion $\bar S$ such that $\bar\nabla g=0$. In our paper, we have considered scalar and total scalar curvatures of the Riemann-Cartan manifold $(M,g,\bar\nabla)$ and proved some formulas connecting these curvatures with scalar and total scalar curvatures of the Riemannian $(M,g)$. In particular we have analyzed these formulas for the case of Weitzenbök manifolds. And in an inference we have proved some vanishing theorems.
Classification :
53C05 53C20
Keywords: Riemann-Cartan manifold, Scalar and complete scalar curvature, Vanishing theorems
Keywords: Riemann-Cartan manifold, Scalar and complete scalar curvature, Vanishing theorems
@article{KJM_2011_35_2_a7,
author = {Sergey Stepanov and Irina Tsyganok and Josef Mike\v{s}},
title = {On scalar and total scalar curvatures of {Riemann-Cartan} manifolds},
journal = {Kragujevac Journal of Mathematics},
pages = {291 },
year = {2011},
volume = {35},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2011_35_2_a7/}
}
TY - JOUR AU - Sergey Stepanov AU - Irina Tsyganok AU - Josef Mikeš TI - On scalar and total scalar curvatures of Riemann-Cartan manifolds JO - Kragujevac Journal of Mathematics PY - 2011 SP - 291 VL - 35 IS - 2 UR - http://geodesic.mathdoc.fr/item/KJM_2011_35_2_a7/ LA - en ID - KJM_2011_35_2_a7 ER -
Sergey Stepanov; Irina Tsyganok; Josef Mikeš. On scalar and total scalar curvatures of Riemann-Cartan manifolds. Kragujevac Journal of Mathematics, Tome 35 (2011) no. 2, p. 291 . http://geodesic.mathdoc.fr/item/KJM_2011_35_2_a7/