On scalar and total scalar curvatures of Riemann-Cartan manifolds
Kragujevac Journal of Mathematics, Tome 35 (2011) no. 2, p. 291
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
The concept of the Riemann-Cartan manifold was introduced by E.~Cartan. The Riemann-Cartan manifold is a triple $(M,g,\bar\nabla)$, where $(M,g)$ is a Riemann $n$-dimensional $(n\geq2)$ manifold with linear connection $\bar\nabla$ having nonzero torsion $\bar S$ such that $\bar\nabla g=0$. In our paper, we have considered scalar and total scalar curvatures of the Riemann-Cartan manifold $(M,g,\bar\nabla)$ and proved some formulas connecting these curvatures with scalar and total scalar curvatures of the Riemannian $(M,g)$. In particular we have analyzed these formulas for the case of Weitzenbök manifolds. And in an inference we have proved some vanishing theorems.
Classification :
53C05 53C20
Keywords: Riemann-Cartan manifold, Scalar and complete scalar curvature, Vanishing theorems
Keywords: Riemann-Cartan manifold, Scalar and complete scalar curvature, Vanishing theorems
@article{KJM_2011_35_2_a7,
author = {Sergey Stepanov and Irina Tsyganok and Josef Mike\v{s}},
title = {On scalar and total scalar curvatures of {Riemann-Cartan} manifolds},
journal = {Kragujevac Journal of Mathematics},
pages = {291 },
publisher = {mathdoc},
volume = {35},
number = {2},
year = {2011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2011_35_2_a7/}
}
TY - JOUR AU - Sergey Stepanov AU - Irina Tsyganok AU - Josef Mikeš TI - On scalar and total scalar curvatures of Riemann-Cartan manifolds JO - Kragujevac Journal of Mathematics PY - 2011 SP - 291 VL - 35 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/KJM_2011_35_2_a7/ LA - en ID - KJM_2011_35_2_a7 ER -
Sergey Stepanov; Irina Tsyganok; Josef Mikeš. On scalar and total scalar curvatures of Riemann-Cartan manifolds. Kragujevac Journal of Mathematics, Tome 35 (2011) no. 2, p. 291 . http://geodesic.mathdoc.fr/item/KJM_2011_35_2_a7/