Degree Equitable Domination on Graphs
Kragujevac Journal of Mathematics, Tome 35 (2011) no. 1, p. 191 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

A subset $D$ of $V$ is called an equitable dominating set if for every $v \in V-D $ there exists $a$ vertex $u n D$ such that $u v n E(G)$ and $eft| ẹg(u)-ẹg (v) \right| eq 1$, where $ẹg(u)$ denotes the degree of vertex $u$ and $ẹg(v)$ denotes the degree of vertex $v$. The minimum cardinality of such a dominating set is denoted by $\gamma^{e}$ and is called the equitable domination number of $G$. This Paper aims at the study of a new concept called degree equitable domination introduced by Prof. E. Sampathkumar. Minimal equitable dominating sets are characterized. The complexity of the new parameter namely equitable domination number is determined.
Classification : 05C
Keywords: Equitable Domination Number, Minimal Equitable Dominating set, Equitable isolate, Equitable independent set
@article{KJM_2011_35_1_a16,
     author = {V. Swaminathan and K. M. Dharmalingam},
     title = {Degree {Equitable} {Domination} on {Graphs}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {191 },
     publisher = {mathdoc},
     volume = {35},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2011_35_1_a16/}
}
TY  - JOUR
AU  - V. Swaminathan
AU  - K. M. Dharmalingam
TI  - Degree Equitable Domination on Graphs
JO  - Kragujevac Journal of Mathematics
PY  - 2011
SP  - 191 
VL  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2011_35_1_a16/
LA  - en
ID  - KJM_2011_35_1_a16
ER  - 
%0 Journal Article
%A V. Swaminathan
%A K. M. Dharmalingam
%T Degree Equitable Domination on Graphs
%J Kragujevac Journal of Mathematics
%D 2011
%P 191 
%V 35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2011_35_1_a16/
%G en
%F KJM_2011_35_1_a16
V. Swaminathan; K. M. Dharmalingam. Degree Equitable Domination on Graphs. Kragujevac Journal of Mathematics, Tome 35 (2011) no. 1, p. 191 . http://geodesic.mathdoc.fr/item/KJM_2011_35_1_a16/