Radial Digraphs
Kragujevac Journal of Mathematics, Tome 34 (2010), p. 161

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The Radial graph of a graph $G$, denoted by $R(G)$, has the same vertex set as $G$ with an edge joining vertices $u$ and $v$ if $d(u, v)$ is equal to the radius of $G$. This definition is extended to a digraph $D$ where the arc $(u, v)$ is included in $R(D)$ if $d(u, v)$ is the radius of $D$. A digraph $D$ is called a Radial digraph if $R(H)=D$ for some digraph $H$. In this paper, we shown that if $D$ is a radial digraph of type 2 then $D$ is the radial digraph of itself or the radial digraph of its complement. This generalizes a known characterization for radial graphs and provides an improved proof. Also, we characterize self complementary self radial digraphs.
Classification : 05C12 05C20
Keywords: Radial graphs, Radial digraphs, Self-radial graphs, Self-radial digraphs
@article{KJM_2010_34_a14,
     author = {Kumarappan Kathiresan and R. Sumathi},
     title = {Radial {Digraphs}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {161 },
     publisher = {mathdoc},
     volume = {34},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2010_34_a14/}
}
TY  - JOUR
AU  - Kumarappan Kathiresan
AU  - R. Sumathi
TI  - Radial Digraphs
JO  - Kragujevac Journal of Mathematics
PY  - 2010
SP  - 161 
VL  - 34
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2010_34_a14/
LA  - en
ID  - KJM_2010_34_a14
ER  - 
%0 Journal Article
%A Kumarappan Kathiresan
%A R. Sumathi
%T Radial Digraphs
%J Kragujevac Journal of Mathematics
%D 2010
%P 161 
%V 34
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2010_34_a14/
%G en
%F KJM_2010_34_a14
Kumarappan Kathiresan; R. Sumathi. Radial Digraphs. Kragujevac Journal of Mathematics, Tome 34 (2010), p. 161 . http://geodesic.mathdoc.fr/item/KJM_2010_34_a14/