Radial Digraphs
Kragujevac Journal of Mathematics, Tome 34 (2010), p. 161 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The Radial graph of a graph $G$, denoted by $R(G)$, has the same vertex set as $G$ with an edge joining vertices $u$ and $v$ if $d(u, v)$ is equal to the radius of $G$. This definition is extended to a digraph $D$ where the arc $(u, v)$ is included in $R(D)$ if $d(u, v)$ is the radius of $D$. A digraph $D$ is called a Radial digraph if $R(H)=D$ for some digraph $H$. In this paper, we shown that if $D$ is a radial digraph of type 2 then $D$ is the radial digraph of itself or the radial digraph of its complement. This generalizes a known characterization for radial graphs and provides an improved proof. Also, we characterize self complementary self radial digraphs.
Classification : 05C12 05C20
Keywords: Radial graphs, Radial digraphs, Self-radial graphs, Self-radial digraphs
@article{KJM_2010_34_a14,
     author = {Kumarappan Kathiresan and R. Sumathi},
     title = {Radial {Digraphs}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {161 },
     publisher = {mathdoc},
     volume = {34},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2010_34_a14/}
}
TY  - JOUR
AU  - Kumarappan Kathiresan
AU  - R. Sumathi
TI  - Radial Digraphs
JO  - Kragujevac Journal of Mathematics
PY  - 2010
SP  - 161 
VL  - 34
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2010_34_a14/
LA  - en
ID  - KJM_2010_34_a14
ER  - 
%0 Journal Article
%A Kumarappan Kathiresan
%A R. Sumathi
%T Radial Digraphs
%J Kragujevac Journal of Mathematics
%D 2010
%P 161 
%V 34
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2010_34_a14/
%G en
%F KJM_2010_34_a14
Kumarappan Kathiresan; R. Sumathi. Radial Digraphs. Kragujevac Journal of Mathematics, Tome 34 (2010), p. 161 . http://geodesic.mathdoc.fr/item/KJM_2010_34_a14/