$D$-equienergetic self-complementary graphs
Kragujevac Journal of Mathematics, Tome 32 (2009), p. 123 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The $D$-eigenvalues $\{\mu_1,\mu_2,\ldots,\mu_n\} $ of a graph $G$ are the eigenvalues of its distance matrix $D$ and form the $D$-spectrum of $G$ denoted by $spec_D(G)$. The $D$-energy $E_{D}(G)$ of the graph $G$ is the sum of the absolute values of its $D$-eigenvalues. We describe here the distance spectrum of some self-complementary graphs in the terms of their adjacency spectrum. These results are used to show that there exists $D$-equienergetic self-complementary graphs of order $n=48t$ and $24(2t+1)$ for $t\geq 4$.
Classification : 05C12 05C50
Keywords: distance matrix, distance energy, spectrum (of distance matrix), equienergetic graphs
@article{KJM_2009_32_a11,
     author = {Gopalapillai Indulal and Ivan Gutman},
     title = {$D$-equienergetic self-complementary graphs},
     journal = {Kragujevac Journal of Mathematics},
     pages = {123 },
     publisher = {mathdoc},
     volume = {32},
     year = {2009},
     zbl = {1199.05089},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2009_32_a11/}
}
TY  - JOUR
AU  - Gopalapillai Indulal
AU  - Ivan Gutman
TI  - $D$-equienergetic self-complementary graphs
JO  - Kragujevac Journal of Mathematics
PY  - 2009
SP  - 123 
VL  - 32
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2009_32_a11/
LA  - en
ID  - KJM_2009_32_a11
ER  - 
%0 Journal Article
%A Gopalapillai Indulal
%A Ivan Gutman
%T $D$-equienergetic self-complementary graphs
%J Kragujevac Journal of Mathematics
%D 2009
%P 123 
%V 32
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2009_32_a11/
%G en
%F KJM_2009_32_a11
Gopalapillai Indulal; Ivan Gutman. $D$-equienergetic self-complementary graphs. Kragujevac Journal of Mathematics, Tome 32 (2009), p. 123 . http://geodesic.mathdoc.fr/item/KJM_2009_32_a11/