$D$-equienergetic self-complementary graphs
Kragujevac Journal of Mathematics, Tome 32 (2009) no. 1.

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The $D$-eigenvalues $\{\mu_1,\mu_2,\ldots,\mu_n\} $ of a graph $G$ are the eigenvalues of its distance matrix $D$ and form the $D$-spectrum of $G$ denoted by $spec_D(G)$. The $D$-energy $E_{D}(G)$ of the graph $G$ is the sum of the absolute values of its $D$-eigenvalues. We describe here the distance spectrum of some self-complementary graphs in the terms of their adjacency spectrum. These results are used to show that there exists $D$-equienergetic self-complementary graphs of order $n=48t$ and $24(2t+1)$ for $t\geq 4$.
@article{KJM_2009_32_1_a11,
     author = {Gopalapillai Indulal and Ivan Gutman},
     title = {$D$-equienergetic self-complementary graphs},
     journal = {Kragujevac Journal of Mathematics},
     pages = {123 - 131},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2009},
     zbl = {1199.05089},
     url = {http://geodesic.mathdoc.fr/item/KJM_2009_32_1_a11/}
}
TY  - JOUR
AU  - Gopalapillai Indulal
AU  - Ivan Gutman
TI  - $D$-equienergetic self-complementary graphs
JO  - Kragujevac Journal of Mathematics
PY  - 2009
SP  - 123 
EP  -  131
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2009_32_1_a11/
ID  - KJM_2009_32_1_a11
ER  - 
%0 Journal Article
%A Gopalapillai Indulal
%A Ivan Gutman
%T $D$-equienergetic self-complementary graphs
%J Kragujevac Journal of Mathematics
%D 2009
%P 123 - 131
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2009_32_1_a11/
%F KJM_2009_32_1_a11
Gopalapillai Indulal; Ivan Gutman. $D$-equienergetic self-complementary graphs. Kragujevac Journal of Mathematics, Tome 32 (2009) no. 1. http://geodesic.mathdoc.fr/item/KJM_2009_32_1_a11/