$D$-equienergetic self-complementary graphs
Kragujevac Journal of Mathematics, Tome 32 (2009) no. 1

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The $D$-eigenvalues $\{\mu_1,\mu_2,\ldots,\mu_n\} $ of a graph $G$ are the eigenvalues of its distance matrix $D$ and form the $D$-spectrum of $G$ denoted by $spec_D(G)$. The $D$-energy $E_{D}(G)$ of the graph $G$ is the sum of the absolute values of its $D$-eigenvalues. We describe here the distance spectrum of some self-complementary graphs in the terms of their adjacency spectrum. These results are used to show that there exists $D$-equienergetic self-complementary graphs of order $n=48t$ and $24(2t+1)$ for $t\geq 4$.
@article{KJM_2009_32_1_a11,
     author = {Gopalapillai Indulal and Ivan Gutman},
     title = {$D$-equienergetic self-complementary graphs},
     journal = {Kragujevac Journal of Mathematics},
     pages = {123 - 131},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2009},
     zbl = {1199.05089},
     url = {http://geodesic.mathdoc.fr/item/KJM_2009_32_1_a11/}
}
TY  - JOUR
AU  - Gopalapillai Indulal
AU  - Ivan Gutman
TI  - $D$-equienergetic self-complementary graphs
JO  - Kragujevac Journal of Mathematics
PY  - 2009
SP  - 123 
EP  -  131
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2009_32_1_a11/
ID  - KJM_2009_32_1_a11
ER  - 
%0 Journal Article
%A Gopalapillai Indulal
%A Ivan Gutman
%T $D$-equienergetic self-complementary graphs
%J Kragujevac Journal of Mathematics
%D 2009
%P 123 - 131
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2009_32_1_a11/
%F KJM_2009_32_1_a11
Gopalapillai Indulal; Ivan Gutman. $D$-equienergetic self-complementary graphs. Kragujevac Journal of Mathematics, Tome 32 (2009) no. 1. http://geodesic.mathdoc.fr/item/KJM_2009_32_1_a11/