Convergence of solutions of certain non-homogeneous third order ordinary differential equations
Kragujevac Journal of Mathematics, Tome 31 (2008) no. 1.

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

This paper is concerned with differential equations of the form $$\st{...}{x}+a\ddot{x}+g(\dot{x})+h(x)=p(t,x,\dot{x},\ddot{x})$$ where $a$ is a positive constant and $g$,$h$ and $p$ are continuous in their respective arguments, with functions $g$ and $h$ not necessarily differentiable. By introducing a complete Lyapunov function, as well as restricting the incrementary ratio $\eta^{-1}\{h(\xi + \eta)-h(\xi)\},(\eta \neq 0),$ of $h$ to a closed sub-interval of the Routh-Hurwitz interval, we prove the convergence of solutions for this equation. This generalizes earlier results.
@article{KJM_2008_31_1_a0,
     author = {A. U. Afuwape and M.O. Omeike},
     title = {Convergence of solutions of certain non-homogeneous third order ordinary differential equations},
     journal = {Kragujevac Journal of Mathematics},
     pages = {5 - 16},
     publisher = {mathdoc},
     volume = {31},
     number = {1},
     year = {2008},
     zbl = {1199.34246},
     url = {http://geodesic.mathdoc.fr/item/KJM_2008_31_1_a0/}
}
TY  - JOUR
AU  - A. U. Afuwape
AU  - M.O. Omeike
TI  - Convergence of solutions of certain non-homogeneous third order ordinary differential equations
JO  - Kragujevac Journal of Mathematics
PY  - 2008
SP  - 5 
EP  -  16
VL  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2008_31_1_a0/
ID  - KJM_2008_31_1_a0
ER  - 
%0 Journal Article
%A A. U. Afuwape
%A M.O. Omeike
%T Convergence of solutions of certain non-homogeneous third order ordinary differential equations
%J Kragujevac Journal of Mathematics
%D 2008
%P 5 - 16
%V 31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2008_31_1_a0/
%F KJM_2008_31_1_a0
A. U. Afuwape; M.O. Omeike. Convergence of solutions of certain non-homogeneous third order ordinary differential equations. Kragujevac Journal of Mathematics, Tome 31 (2008) no. 1. http://geodesic.mathdoc.fr/item/KJM_2008_31_1_a0/