On orbits for pairs of operators on an infinite-dimensional complex Hilbert space
Kragujevac Journal of Mathematics, Tome 30 (2007) no. 1.

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The results presented in this paper are motivated by some of the results obtained by B.~Beauzamy in \cite[Chap. III]{bb1} for a single operator on an infinite-dimensional complex Hilbert space that imply existence of a dense set of vectors with orbits tending strongly to infinity. For the case of invertible operator $T$, one of B.~Beauzamy's results implies that the space actually contains a dense set of vectors for which both the orbits under $T$ and its inverse tend strongly to infinity. We are going to show that this is also true for any suitable pair of operators.
@article{KJM_2007_30_1_a21,
     author = {Sonja Man\v{c}evska},
     title = {On orbits for pairs of operators on an infinite-dimensional complex {Hilbert} space},
     journal = {Kragujevac Journal of Mathematics},
     pages = {293 - 304},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {2007},
     zbl = {1222.47006},
     url = {http://geodesic.mathdoc.fr/item/KJM_2007_30_1_a21/}
}
TY  - JOUR
AU  - Sonja Mančevska
TI  - On orbits for pairs of operators on an infinite-dimensional complex Hilbert space
JO  - Kragujevac Journal of Mathematics
PY  - 2007
SP  - 293 
EP  -  304
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2007_30_1_a21/
ID  - KJM_2007_30_1_a21
ER  - 
%0 Journal Article
%A Sonja Mančevska
%T On orbits for pairs of operators on an infinite-dimensional complex Hilbert space
%J Kragujevac Journal of Mathematics
%D 2007
%P 293 - 304
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2007_30_1_a21/
%F KJM_2007_30_1_a21
Sonja Mančevska. On orbits for pairs of operators on an infinite-dimensional complex Hilbert space. Kragujevac Journal of Mathematics, Tome 30 (2007) no. 1. http://geodesic.mathdoc.fr/item/KJM_2007_30_1_a21/