On weighted norm integral inequality of g. h. Hardy's type
Kragujevac Journal of Mathematics, Tome 29 (2006), p. 165 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper, we give a necessary and sufficient condition on Hardy's integral inequality: \begin{equation}\label{ort_cond} \int_{X}[Tf]^{p}wd\mu \leq C\int_{X}f^{p}vd\mu\;\;\;\;\;\forall f \geq 0 \end{equation} where $w, v$ are non-negative measurable functions on $X$, a non-negative function $f$ defined on $(0, \infty), K(x,y)$ is a non-negative and measurable on $X \times X$, $(Tf)(x)= \int^{\infty}_{0}K(x,y)f(y)dy $ and $C$ is a constant depending on $K, p$ but independent of $f$. This work is a continuation of our recent result in \cite{RauGVM1}.
Classification : 26D15 42B30
Keywords: integral inequality, Hardy's integral inequality
@article{KJM_2006_29_a16,
     author = {K. Rauf and J. O. Omolehin},
     title = {On weighted norm integral inequality of g. h. {Hardy's} type},
     journal = {Kragujevac Journal of Mathematics},
     pages = {165 },
     publisher = {mathdoc},
     volume = {29},
     year = {2006},
     zbl = {1164.26351},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2006_29_a16/}
}
TY  - JOUR
AU  - K. Rauf
AU  - J. O. Omolehin
TI  - On weighted norm integral inequality of g. h. Hardy's type
JO  - Kragujevac Journal of Mathematics
PY  - 2006
SP  - 165 
VL  - 29
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2006_29_a16/
LA  - en
ID  - KJM_2006_29_a16
ER  - 
%0 Journal Article
%A K. Rauf
%A J. O. Omolehin
%T On weighted norm integral inequality of g. h. Hardy's type
%J Kragujevac Journal of Mathematics
%D 2006
%P 165 
%V 29
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2006_29_a16/
%G en
%F KJM_2006_29_a16
K. Rauf; J. O. Omolehin. On weighted norm integral inequality of g. h. Hardy's type. Kragujevac Journal of Mathematics, Tome 29 (2006), p. 165 . http://geodesic.mathdoc.fr/item/KJM_2006_29_a16/