The special function ش , II
Kragujevac Journal of Mathematics, Tome 29 (2006), p. 141

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We describe a method for estimating the special function ^s> , in the complex cut plane $A = {\mathbf{C}}\backslash �eft( { - \infty ,0} \right]$, with a Stieltjes transform, which implies that the function ^s> is \textit{logarithmically completely monotonic}. To be complete, we find a nearly exact integral representation. At the end, we also establish that $1 \mathord{�eft/ {\vphantom {1 }} \right. \kern-\nulldelimiterspace} \mbox{^s>} �eft( x \right)$ is a complete Bernstein function and we give the representation formula which is analogous to the L\'evy-Khinchin formula.
Classification : 33B15 26A48 33E20
Keywords: special functions, completely monotonic functions;integral transforms, Bernstein functions
@article{KJM_2006_29_a13,
     author = {Andrea Ossicini},
     title = {The special function ش , {II}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {141 },
     publisher = {mathdoc},
     volume = {29},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2006_29_a13/}
}
TY  - JOUR
AU  - Andrea Ossicini
TI  - The special function ش , II
JO  - Kragujevac Journal of Mathematics
PY  - 2006
SP  - 141 
VL  - 29
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2006_29_a13/
LA  - en
ID  - KJM_2006_29_a13
ER  - 
%0 Journal Article
%A Andrea Ossicini
%T The special function ش , II
%J Kragujevac Journal of Mathematics
%D 2006
%P 141 
%V 29
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2006_29_a13/
%G en
%F KJM_2006_29_a13
Andrea Ossicini. The special function ش , II. Kragujevac Journal of Mathematics, Tome 29 (2006), p. 141 . http://geodesic.mathdoc.fr/item/KJM_2006_29_a13/