The special function ش , II
Kragujevac Journal of Mathematics, Tome 29 (2006), p. 141 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We describe a method for estimating the special function ^s> , in the complex cut plane $A = {\mathbf{C}}\backslash �eft( { - \infty ,0} \right]$, with a Stieltjes transform, which implies that the function ^s> is \textit{logarithmically completely monotonic}. To be complete, we find a nearly exact integral representation. At the end, we also establish that $1 \mathord{�eft/ {\vphantom {1 }} \right. \kern-\nulldelimiterspace} \mbox{^s>} �eft( x \right)$ is a complete Bernstein function and we give the representation formula which is analogous to the L\'evy-Khinchin formula.
Classification : 33B15 26A48 33E20
Keywords: special functions, completely monotonic functions;integral transforms, Bernstein functions
@article{KJM_2006_29_a13,
     author = {Andrea Ossicini},
     title = {The special function ش , {II}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {141 },
     publisher = {mathdoc},
     volume = {29},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2006_29_a13/}
}
TY  - JOUR
AU  - Andrea Ossicini
TI  - The special function ش , II
JO  - Kragujevac Journal of Mathematics
PY  - 2006
SP  - 141 
VL  - 29
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2006_29_a13/
LA  - en
ID  - KJM_2006_29_a13
ER  - 
%0 Journal Article
%A Andrea Ossicini
%T The special function ش , II
%J Kragujevac Journal of Mathematics
%D 2006
%P 141 
%V 29
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2006_29_a13/
%G en
%F KJM_2006_29_a13
Andrea Ossicini. The special function ش , II. Kragujevac Journal of Mathematics, Tome 29 (2006), p. 141 . http://geodesic.mathdoc.fr/item/KJM_2006_29_a13/