The special function ش , II
Kragujevac Journal of Mathematics, Tome 29 (2006), p. 141
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We describe a method for estimating the special function ^s> , in the complex cut plane $A = {\mathbf{C}}\backslash �eft( { - \infty ,0} \right]$, with a Stieltjes transform, which implies that the function ^s> is \textit{logarithmically completely monotonic}. To be complete, we find a nearly exact integral representation. At the end, we also establish that $1 \mathord{�eft/ {\vphantom {1 }} \right. \kern-\nulldelimiterspace} \mbox{^s>} �eft( x \right)$ is a complete Bernstein function and we give the representation formula which is analogous to the L\'evy-Khinchin formula.
Classification :
33B15 26A48 33E20
Keywords: special functions, completely monotonic functions;integral transforms, Bernstein functions
Keywords: special functions, completely monotonic functions;integral transforms, Bernstein functions
@article{KJM_2006_29_a13,
author = {Andrea Ossicini},
title = {The special function ش , {II}},
journal = {Kragujevac Journal of Mathematics},
pages = {141 },
year = {2006},
volume = {29},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2006_29_a13/}
}
Andrea Ossicini. The special function ش , II. Kragujevac Journal of Mathematics, Tome 29 (2006), p. 141 . http://geodesic.mathdoc.fr/item/KJM_2006_29_a13/