On weighted norm integral inequality of g. h. Hardy's type
Kragujevac Journal of Mathematics, Tome 29 (2006) no. 1.

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper, we give a necessary and sufficient condition on Hardy's integral inequality: \begin{equation}\label{ort_cond} \int_{X}[Tf]^{p}wd\mu \leq C\int_{X}f^{p}vd\mu\;\;\;\;\;\forall f \geq 0 \end{equation} where $w, v$ are non-negative measurable functions on $X$, a non-negative function $f$ defined on $(0, \infty), K(x,y)$ is a non-negative and measurable on $X \times X$, $(Tf)(x)= \int^{\infty}_{0}K(x,y)f(y)dy $ and $C$ is a constant depending on $K, p$ but independent of $f$. This work is a continuation of our recent result in \cite{RauGVM1}.
@article{KJM_2006_29_1_a16,
     author = {K. Rauf and J. O. Omolehin},
     title = {On weighted norm integral inequality of g. h. {Hardy's} type},
     journal = {Kragujevac Journal of Mathematics},
     pages = {165 - 173},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2006},
     zbl = {1164.26351},
     url = {http://geodesic.mathdoc.fr/item/KJM_2006_29_1_a16/}
}
TY  - JOUR
AU  - K. Rauf
AU  - J. O. Omolehin
TI  - On weighted norm integral inequality of g. h. Hardy's type
JO  - Kragujevac Journal of Mathematics
PY  - 2006
SP  - 165 
EP  -  173
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2006_29_1_a16/
ID  - KJM_2006_29_1_a16
ER  - 
%0 Journal Article
%A K. Rauf
%A J. O. Omolehin
%T On weighted norm integral inequality of g. h. Hardy's type
%J Kragujevac Journal of Mathematics
%D 2006
%P 165 - 173
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2006_29_1_a16/
%F KJM_2006_29_1_a16
K. Rauf; J. O. Omolehin. On weighted norm integral inequality of g. h. Hardy's type. Kragujevac Journal of Mathematics, Tome 29 (2006) no. 1. http://geodesic.mathdoc.fr/item/KJM_2006_29_1_a16/