Voir la notice de l'article provenant de la source Numdam
Soit un objet algébrique (par exemple une courbe ou un revêtement) défini sur et de corps des modules un corps de nombres . Il est bien connu que n’admet pas nécessairement de -modèle. En utilisant deux résultats récents dus à P. Dèbes, J.-C. Douai et M. Emsalem nous donnerons un majorant pour le degré d’un corps de définition de sur . Dans une deuxième partie, nous donnerons des conditions suffisantes sur l’ordre de Aut() pour que admette un -modèle.
Let be an algebraic object (e.g. a curve or a cover) defined over and of field of moduli an algebraic number field . It is well known that does not necessarily admit a -model. Using two recent results due to P. Dèbes, J.-C. Douai and M. Emsalem we shall give a bound from above for the degree of a field of definition of over . In the second part, we shall give a sufficient condition on the order of Aut() for to have a -model.
@article{JTNB_2003__15_1_45_0, author = {Derome, Geoffroy}, title = {Corps de d\'efinition et points rationnels}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {45--55}, publisher = {Universit\'e Bordeaux I}, volume = {15}, number = {1}, year = {2003}, mrnumber = {2019000}, zbl = {1073.14520}, language = {fr}, url = {http://geodesic.mathdoc.fr/item/JTNB_2003__15_1_45_0/} }
Derome, Geoffroy. Corps de définition et points rationnels. Journal de théorie des nombres de Bordeaux, Tome 15 (2003) no. 1, pp. 45-55. http://geodesic.mathdoc.fr/item/JTNB_2003__15_1_45_0/
[1] On the theory of theta functions, the moduli of abelian varieties, and the moduli of curves. Ann. of Math. 75 (1962), 342-381. | Zbl | MR
,[2] On the Galois extensions of the maximal cyclotomic field. Math. USSR Izv. 14 (1980), 247-256. | Zbl
,[3] Finiteness results in descent theory. J. London Math. Soc., à paraître. | Zbl
, ,[4] Algebraic covers, field of moduli versus field of definition. Ann. Sci. École Norm. Sup. (4) 30 (1997), 303-338. | Zbl | MR | mathdoc-id
, ,[5] On fields of moduli of curves. J. Algebra 211 (1999), 42-56. | Zbl | MR
, ,[6] Quelques aspects des surfaces de Riemann. Progress in Mathematics, 77. Birkhäuser Boston, Inc., Boston, MA, 1989. | Zbl | MR
,[7] Fermat's quartic curve and the tetrahedron. Extremal Riemann surfaces (San Francisco, CA, 1995), 43-62, Contemp. Math., 201, Amer. Math. Soc., Providence, RI, 1997. | Zbl | MR
, ,[8] A, On the field of rationality for an abelian variety. Nagoya Math. J. 45 (1971), 167-178. | Zbl | MR
[9] The arithmetic of elliptic curves. Graduate Texts in Mathematics, 106. Springer-Verlag, New York, 1986. | Zbl | MR
,[10] The field of definition of a variety. Amer. J. Math. 78 (1956), 509-524. | Zbl | MR
,[11] The "obvious" part of Belyi's theorem and Riemann surfaces with many automorphisms. Geometric Galois actions, 1, 97-112, London Math. Soc. Lecture Note Ser., 242, Cambridge Univ. Press, Cambridge, 1997. | Zbl | MR
,